
OpenDDS Developer's Guide

OpenDDS Version 3.22

September 16, 2022

Supported by Object Computing, Inc. (OCI)

https://www.opendds.org

https://www.objectcomputing.com

http://www.opendds.org/
http://www.objectcomputing.com/

Table of Contents

 Preface..x

Chapter 1 Introduction...1

DCPS Overview...2

Basic Concepts...2

Built-In Topics..4

Quality of Service Policies..4

Listeners...5

Conditions..5

OpenDDS Implementation..5

Compliance...5

Extensions to the DDS Specification..8

OpenDDS Architecture...8

Installation..13

Building With a Feature Enabled or Disabled..13

Disabling the Building of Built-In Topic Support..14

Disabling the Building of Compliance Profile Features..14

Building Applications that use OpenDDS..16

MPC: The Makefile, Project, and Workspace Creator..16

O p e n D D S D e v e l o p e r ’ s G u i d e i

CMake..16

Custom Build systems..17

Chapter 2 Getting Started...19

Using DCPS...19

Defining Data Types with IDL..19

Processing the IDL...23

A Simple Message Publisher..25

Setting up the Subscriber..29

The Data Reader Listener Implementation..31

Cleaning up in OpenDDS Clients..32

Running the Example...33

Running Our Example with RTPS...34

Data Handling Optimizations..36

Registering and Using Instances in the Publisher...36

Reading Multiple Samples..36

Zero-Copy Read..37

Chapter 3 Quality of Service...39

Introduction..39

QoS Policies..39

Default QoS Policy Values..40

LIVELINESS...44

RELIABILITY..45

HISTORY..46

DURABILITY...46

DURABILITY_SERVICE..47

RESOURCE_LIMITS...48

PARTITION...48

DEADLINE..49

LIFESPAN..50

USER_DATA...50

TOPIC_DATA..51

GROUP_DATA...51

i i O p e n D D S D e v e l o p e r ’ s G u i d e

TRANSPORT_PRIORITY...51

LATENCY_BUDGET..52

ENTITY_FACTORY...54

PRESENTATION...55

DESTINATION_ORDER..56

WRITER_DATA_LIFECYCLE...56

READER_DATA_LIFECYCLE..57

TIME_BASED_FILTER..57

OWNERSHIP..58

OWNERSHIP_STRENGTH..58

Policy Example..59

Chapter 4 Conditions and Listeners..61

Introduction..61

Communication Status Types...62

Topic Status Types...62

Subscriber Status Types...63

Data Reader Status Types..63

Data Writer Status Types...66

Listeners...67

Topic Listener...69

Data Writer Listener..69

Publisher Listener..69

Data Reader Listener...69

Subscriber Listener..70

Domain Participant Listener..70

Conditions...70

Status Condition...70

Additional Condition Types..71

Chapter 5 Content-Subscription Profile..73

Introduction..73

Content-Filtered Topic..74

O p e n D D S D e v e l o p e r ’ s G u i d e i i i

Filter Expressions...75

Expression Parameters...75

Filtering and Dispose/Unregister Samples...76

Content-Filtered Topic Example...76

Query Condition..77

Query Expressions..78

Query Condition Example...78

Multi Topic..78

Topic Expressions...79

Usage Notes...80

Multi Topic Example..82

Chapter 6 Built-In Topics..85

Introduction..85

Built-In Topics for DCPSInfoRepo Configuration..85

DCPSParticipant Topic...86

DCPSTopic Topic..86

DCPSPublication Topic...87

DCPSSubscription Topic...87

Built-In Topic Subscription Example..88

OpenDDS-specific Built-In Topics...88

OpenDDSParticipantLocation Topic...88

OpenDDSConnectionRecord Topic...89

OpenDDSInternalThread Topic..89

Chapter 7 Run-time Configuration..91

Configuration Approach..91

Common Configuration Options..93

Discovery Configuration...99

Domain Configuration..99

Configuring Applications for DCPSInfoRepo..102

Configuring for DDSI-RTPS Discovery...106

Configuring for Static Discovery..114

i v O p e n D D S D e v e l o p e r ’ s G u i d e

Transport Configuration...119

Overview..119

Configuration File Examples..121

Transport Registry Example...123

Transport Configuration Options..124

Transport Instance Options..125

Discovery and Transport Configuration Templates..138

Configuring Discovery for a Set of Similar Domains..138

Configuring a Set of Similar Transports...139

Adding Customizations...140

Example Config.ini...140

Logging...141

DCPS Layer Debug Logging...142

Transport Layer Debug Logging..142

Security Debug Logging...143

Chapter 8 opendds_idl...145

opendds_idl Command Line Options...145

Using the IDL-to-C++11 Mapping..148

Chapter 9 The DCPS Information Repository...151

DCPS Information Repository Options..151

Repository Federation..153

Federation Management..154

Federation Example...156

Chapter 10 Java Bindings..159

Introduction..159

IDL and Code Generation...159

Setting up an OpenDDS Java Project..160

A Simple Message Publisher...163

Initializing the Participant..163

Registering the Data Type and Creating a Topic...164

Creating a Publisher...164

O p e n D D S D e v e l o p e r ’ s G u i d e v

Creating a DataWriter and Registering an Instance..164

Setting up the Subscriber...165

Creating a Subscriber..165

Creating a DataReader and Listener..166

The DataReader Listener Implementation..166

Cleaning up OpenDDS Java Clients..167

Configuring the Example..168

Running the Example..168

Java Message Service (JMS) Support..169

Chapter 11 Modeling SDK...171

Overview...171

Model Capture..171

Code Generation...173

Programming..174

Installation and Getting Started...174

Prerequisites..174

Installation...174

Getting Started...176

Developing Applications...176

Modeling Support Library..176

Generated Code..177

Application Code Requirements...179

Chapter 12 Alternate Interfaces to Data...187

Recorder and Replayer...187

API Structure..188

Usage Model...188

QoS Processing...189

Recorder With XTypes Dynamic Language Binding...190

Observer...191

Attaching Observers to Entities...191

v i O p e n D D S D e v e l o p e r ’ s G u i d e

Writing Observer-Derived Classes...192

The Observer::Sample structure..192

Chapter 13 Safety Profile..195

Overview...195

Safety Profile Subset of OpenDDS..195

Safety Profile Configurations of ACE..196

Run-time Configurable Options..197

Running ACE and OpenDDS Tests..197

Using the Memory Pool in Applications..198

Chapter 14 DDS Security...199

Building OpenDDS with Security Enabled..199

Prerequisites..199

Building OpenDDS with Security on Windows...200

Building OpenDDS with Security on Linux...202

Building OpenDDS with Security on macOS..202

Building OpenDDS with Security for Android..203

Architecture of the DDS Security Specification..203

Terms and Background Info..203

Required DDS Security Artifacts..204

Per-Domain Artifacts..204

Per-Participant Artifacts...204

Required OpenDDS Configuration..204

DDS Security Configuration via PropertyQosPolicy...205

PropertyQosPolicy Example Code..205

Identity Certificates and Certificate Authorities..207

Identity, Permissions, and Subject Names...207

Examples in the OpenDDS Source Code Repository..207

Using OpenSSL Utilities for OpenDDS...208

Domain Governance Document..209

Global Governance Model..209

Key Governance Elements..209

O p e n D D S D e v e l o p e r ’ s G u i d e v i i

Domain Rule Configuration Options...210

Topic Rule Configuration Options..211

Governance XML Example...212

Participant Permissions Document...214

Key Permissions Elements..214

Permissions XML Example...216

DDS Security Implementation Status...218

Chapter 15 Internet-Enabled RTPS...219

Overview...219

The RtpsRelay...220

Using the RtpsRelay...221

Usage...222

Deployment Considerations...224

Interactive Connectivity Establishment (ICE) for RTPS...224

Security Considerations..225

Use DDS Security...225

Understand the Weaknesses of (Secure) RTPS Discovery...................................226

Run Participants in a Secure Network...227

Chapter 16 XTypes..229

Overview...229

Features..230

Extensibility..230

Assignability...230

Interoperability with non-XTypes Implementations...231

Examples and Explanation..231

Mutable Extensibility...231

Assignability...232

Member IDs..232

Appendable Extensibility..233

Final Extensibility...234

Try Construct...234

v i i i O p e n D D S D e v e l o p e r ’ s G u i d e

Data Representation...235

Type Consistency Enforcement...236

IDL Annotations..237

Indicating which Types can be topic types...237

Specifying allowed Data Representations..237

Determining Extensibility...238

Customizing XTypes per-member...239

Member ID assignment..239

Determining the Key Fields of a Type..240

Dynamic Language Binding..240

Representing Types with TypeObject and DynamicType.....................................240

Interpreting Data Samples with DynamicData...241

Unimplemented Features...245

Type System...245

Annotations..245

Differences from the specification..246

O p e n D D S D e v e l o p e r ’ s G u i d e i x

Preface

What Is OpenDDS?
OpenDDS is an open source implementation of a group of related Object Management

Group (OMG) specifications.

1) Data Distribution Service (DDS) for Real-Time Systems v1.4 (OMG document

formal/2015-04-10). This specification details the core functionality implemented by

OpenDDS for real-time publish and subscribe applications and is described throughout

this document.

2) The Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire

Protocol Specification (DDSI-RTPS) v2.3 (OMG document formal/2019-04-03).

Although the document number is v2.3, it specifies protocol version 2.4. This

specification describes the requirements for interoperability between DDS

implementations.

3) DDS Security v1.1 (OMG document formal/2018-04-01) extends DDS with capabilities

for authentication and encryption. OpenDDS’s support for the DDS Security

specification is described below in Chapter 14.

4) Extensible and Dynamic Topic Types for DDS (XTypes) v1.3 (OMG document

formal/2020-02-04) defines details of the type system used for the data exchanged on

x O p e n D D S D e v e l o p e r ’ s G u i d e

DDS Topics, including how schema and data are encoded for network transmission.

Details of DDS-XTypes are below in Chapter 16.

OpenDDS is sponsored by Object Computing, Inc. (OCI) and is available via

https://www.opendds.org.

Licensing Terms
OpenDDS is made available under the open source software model. The source code may be

freely downloaded and is open for inspection, review, comment, and improvement. Copies

may be freely installed across all your systems and those of your customers. There is no

charge for development or run-time licenses. The source code is designed to be compiled,

and used, across a wide variety of hardware and operating systems architectures. You may

modify it for your own needs, within the terms of the license agreements. You must not

copyright OpenDDS software. For details of the licensing terms, see the file named LICENSE

that is included in the OpenDDS source code distribution or visit

http://www.opendds.org/license.html.

OpenDDS also utilizes other open source software products, including MPC (Make Project

Creator), ACE (the ADAPTIVE Communication Environment), and TAO (The ACE ORB).

More information about these products is available from OCI’s web site at

http://www.objectcomputing.com/products.

OpenDDS is open source and the development team welcomes contributions of code, tests,

and ideas. Active participation by users ensures a robust implementation. Contact OCI if you

are interested in contributing to the development of OpenDDS. Please note that any code

that is contributed to and becomes part of the OpenDDS open source code base is subject to

the same licensing terms as the rest of the OpenDDS code base.

About This Guide
This Developer’s Guide corresponds to OpenDDS version 3.22. This guide is primarily

focused on the specifics of using and configuring OpenDDS to build distributed publish-

subscribe applications. While it does give a general overview of the OMG Data Distribution

Service, this guide is not intended to provide comprehensive coverage of the specification.

The intent of this guide is to help you become proficient with OpenDDS as quickly as

possible.

Highlights of the 3.22 Release
NOTE: Numbers in parenthesis are GitHub pull requests

O p e n D D S D e v e l o p e r ’ s G u i d e x i

http://www.objectcomputing.com/products
http://www.opendds.org/license.html
https://www.opendds.org/

Additions:

• Sequences in FACE mapping: support == for any type (#3604)

• Implement instance security methods from DDS Security Spec (#3557)

• Added meta-discovery server to RtpsRelay (#3655)

• Support building for VxWorks 21.03 (#3723)

• Alive and active flags now have timestamps in RtpsRelay (#3579)

• Static initializers for registration of TypeSupport objects (#3736)

Fixes:

• Fixed bug where partitions for RtpsRelay client were not updated (#3583)

• Fixed data race on status flag which causes missing listener invocation for BIT

readers (#3584)

• Fixed bug where SEDP removes crypto handles before dissassociating (#3597)

• Fixed null BIT subscriber in ConnectionRecord (#3610)

• Fixed bug where user data reverts to original for RtpsRelay clients (#3613)

• Removed warning about unexpected register in MulticastManager (#3608)

• Fixed reference counting issue that blocks SPDP shutdown (#3619)

• Fixed dds_suppress_anys=0 (#3656)

• Ignore interfaces with no FQDN in AddressLookup (#3660)

• Fixed memory leak where DataWriter doesn't remove unregistered instances

(#3684)

• Update TransportClient's use of PendingAssoc's lock (#3652)

• Clone Google Test and RapidJSON if not found (#3691)

• Set extensibility on enums (#3686)

• Do not use fixed-size buffer for partition parsing (#3704)

• Prevent Use Of IPv4-mapped IPv6 'Any' Addresses In RTPS Locators (#3713)

• Fix SEGV in shutdown when using monitor (#3732)

• Crash from missing BIT reader in shutdown (#3741)

Notes:

• Removed wait param in TransportRegistry::create_inst (#3644)

x i i O p e n D D S D e v e l o p e r ’ s G u i d e

• Changed Multicast Group Join Errors to Warnings (#3558)

• Remove Leading `::` from `TypeObject` Names (#3679)

• Updates to the ValueReader/ValueWriter/ValueDispatcher framework (#3719)

• Updates to Dockerfile (#3737)

ACE/TAO Version Compatibility
OpenDDS 3.22 is compatible with the current patch level of OCI TAO 2.2a (which includes

ACE), as well as the current DOC Group micro release in the ACE 6.x / TAO 2.x series. See

the $DDS_ROOT/README.md file for details.

Conventions
This guide uses the following conventions:

Fixed pitch text
Indicates example code or information a user would enter using

a keyboard.

Bold fixed pitch text
Indicates example code that has been modified from a previous

example or text appearing in a menu or dialog box.

Italic text Indicates a point of emphasis.

...
A horizontal ellipsis indicates that the statement is omitting

text.

.

.

.

A vertical ellipsis indicates that a segment of code is omitted

from the example.

Coding Examples
Throughout this guide, we illustrate topics with coding examples. The examples in this

guide are intended for illustration purposes and should not be considered to be “production-

ready” code. In particular, error handling is sometimes kept to a minimum to help the

reader focus on the particular feature or technique that is being presented in the example.

The source code for all these examples is available as part of the OpenDDS source code

distribution in the $DDS_ROOT/DevGuideExamples/ directory. MPC files are provided with

the examples for generating build-tool specific files, such as GNU Makefiles or Visual C++

project and solution files. A Perl script named run_test.pl is provided with each example

so you can easily run it.

O p e n D D S D e v e l o p e r ’ s G u i d e x i i i

Related Documents
Throughout this guide, we refer to various specifications published by the Object

Management Group (OMG) and from other sources.

OMG references take the form group/number where group represents the OMG working

group responsible for developing the specification, or the keyword formal if the

specification has been formally adopted, and number represents the year, month, and serial

number within the month the specification was released. For example, the OMG DDS

version 1.4 specification is referenced as formal/2015-04-10.

You can download any referenced OMG specification directly from the OMG web site by

prepending http://www.omg.org/cgi-bin/doc? to the specification’s reference. Thus, the

specification formal/07-01-01 becomes http://www.omg.org/cgi-bin/doc?formal/07-

01-01. Providing this destination to a web browser should take you to a site from which you

can download the referenced specification document.

Additional documentation on OpenDDS is produced and maintained by Object Computing,

Inc. and is available from the OpenDDS Website at https://www.opendds.org.

Here are some documents of interest and their locations:

Document Location

Data Distribution Service (DDS) for Real-Time
Systems v1.4 (OMG Document formal/2015-04-10)

http://www.omg.org/spec/DDS/1.4/PDF

The Real-time Publish-Subscribe Wire Protocol DDS
Interoperability Wire Protocol Specification (DDSI-
RTPS) v2.3 (OMG Document formal/2019-04-03)

http://www.omg.org/spec/DDSI-RTPS/2.3/PDF

OMG Data Distribution Portal http://portals.omg.org/dds/

OpenDDS Build Instructions, Architecture, and
Doxygen Documentation

http://www.opendds.org/documentation.html

OpenDDS Frequently Asked Questions http://www.opendds.org/faq.html

Supported Platforms
OCI regularly builds and tests OpenDDS on a wide variety of platforms, operating systems,

and compilers. We continually update OpenDDS to support additional platforms. See the

$DDS_ROOT/README.md file in the distribution for the most recent platform support

information.

x i v O p e n D D S D e v e l o p e r ’ s G u i d e

http://www.opendds.org/faq.html
http://www.opendds.org/documentation.html
http://portals.omg.org/dds/
http://www.omg.org/spec/DDSI-RTPS/2.3/PDF
http://www.omg.org/spec/DDS/1.4/PDF
https://www.opendds.org/
http://www.omg.org/cgi-bin/doc?formal/07-01-01
http://www.omg.org/cgi-bin/doc?formal/07-01-01

Customer Support
Enterprises are discovering that it takes considerable experience, knowledge, and money to

design and build a complex distributed application that is robust and scalable. OCI can help

you successfully architect and deliver your solution by drawing on the experience of

seasoned architects who have extensive experience in today's middleware technologies and

who understand how to leverage the power of DDS.

Our service areas include systems architecture, large-scale distributed application

architecture, and object oriented design and development. We excel in technologies such as

DDS (OpenDDS), CORBA (ACE+TAO, JacORB, and opalORB), Java EE (JBoss), FIX

(QuickFIX), and FAST (QuickFAST).

Support offerings for OpenDDS include:

Consulting services to aid in the design of extensible, scalable, and robust publish-subscribe

solutions, including the validation of domain-specific approaches, service selection, product

customization and extension, and migrating your applications to OpenDDS from other

publish-subscribe technologies and products.

24x7 support that guarantees the highest response level for your production-level systems.

On-demand service agreement for identification and assessment of minor bugs and issues

that may arise during the development and deployment of OpenDDS-based solutions.

Our architects have specific and extensive domain expertise in security,

telecommunications, defense, financial, and other real-time distributed applications.

We can provide professionals who can assist you on short-term engagements, such as

architecture and design review, rapid prototyping, troubleshooting, and debugging.

Alternatively, for larger engagements, we can provide mentors, architects, and

programmers to work alongside your team, providing assistance and thought leadership

throughout the life cycle of the project.

Contact us at +1.314.579.0066 or email <sales@objectcomputing.com> for more

information.

OCI Technology Training
OCI provides a rich program of more than 50 well-focused courses designed to give

developers a solid foundation in a variety of technical topics, such as Object Oriented

Analysis and Design, C++ Programming, Java Programming, Distributed Computing

Technologies (including DDS), Patterns, XML, and UNIX/Linux. Our courses clearly explain

major concepts and techniques, and demonstrate, through hands-on exercises, how they

map to real-world applications.

O p e n D D S D e v e l o p e r ’ s G u i d e x v

Our training offerings are constantly changing to meet the latest needs of our clients and to

reflect changes in technology. Be sure to check out our web site at

http://www.objectcomputing.com/training for updates to our Educational Programs.

On-Site or Remote Classes
We can provide the following courses at your company’s facility or remotely, integrating

them seamlessly with other employee development programs. For more information about

these or other courses in the OCI curriculum, visit our course catalog on-line at

http://www.objectcomputing.com/training.

Introduction to CORBA
In this one-day course, you will learn the benefits of distributed object computing; the role

CORBA plays in developing distributed applications; when and where to apply CORBA; and

future development trends in CORBA.

CORBA Programming with C++
In this hands-on, four-day course, you will learn: the role CORBA plays in developing

distributed applications; the OMG’s Object Management Architecture; how to write CORBA

clients and servers in C++; how to use CORBA services such as Naming and Events; using

CORBA exceptions; and basic and advanced features of the Portable Object Adapter (POA).

This course also covers the specification of interfaces using OMG Interface Definition

Language (IDL) and details of the OMG IDL-to-C++ language mapping, and provides hands-

on practice in developing CORBA clients and servers in C++ (using TAO).

Advanced CORBA Programming Using TAO
In this intensive, hands-on, four-day course, you will learn: several advanced CORBA

concepts and techniques and how they are supported by TAO; how to configure TAO

components for performance and space optimizations; and how to use TAO’s various

concurrency models to meet your application’s end-to-end QoS guarantees. The course

covers recent additions to the CORBA specifications and to TAO to support real-time CORBA

programming, including Real-Time CORBA. It also covers TAO’s Real-Time Event Service,

Notification Service, and Implementation Repository, and provides extensive hands-on

practice in developing advanced TAO clients and servers in C++. This course is intended for

experienced and serious CORBA/C++ programmers.

x v i O p e n D D S D e v e l o p e r ’ s G u i d e

Note

http://www.objectcomputing.com/training
http://www.objectcomputing.com/training

Using the ACE C++ Framework
In this hands-on, four-day course, you will learn how to implement Interprocess

Communication (IPC) mechanisms using the ACE (ADAPTIVE Communication Environment)

IPC Service Access Point (SAP) classes and the Acceptor/Connector pattern. The course will

also show you how to use a Reactor in event demultiplexing and dispatching; how to

implement thread-safe applications using the ACE thread encapsulation class categories;

and how to identify appropriate ACE components to use for your specific application needs.

Object-Oriented Design Patterns and Frameworks
In this three-day course, you will learn the critical language and terminology relating to

design patterns, gain an understanding of key design patterns, learn how to select the

appropriate pattern to apply in a given situation, and learn how to apply patterns to

construct robust applications and frameworks. The course is designed for software

developers who wish to utilize advanced object oriented design techniques and managers

with a strong programming background who will be involved in the design and

implementation of object oriented software systems.

OpenDDS Programming with C++ or with Java
In this four-day course, you will learn to build applications using OpenDDS, the open source

implementation of the OMG’s Data Distribution Service (DDS) for Real-Time Systems. You

will learn how to build data-centric systems that share data via OpenDDS. You will also

learn to configure OpenDDS to meet your application’s Quality of Service requirements.

This course is intended for experienced C++ or Java developers.

OpenDDS Modeling Software Development Kit (SDK)
In this two-day course, developers and architects gain hands-on experience using the

OpenDDS Modeling SDK to design and build publish/subscribe applications that use

OpenDDS. The Eclipse-based, open source Modeling SDK enables developers to define an

application's middleware components and data structures as a UML model, then generate

the code to implement the model using OpenDDS. The generated code can then be compiled

and linked with the application to provide seamless middleware support to the application.

C++ Programming Using Boost
In this four-day course, you will learn about the most widely used and useful libraries that

make up Boost. Students will learn how to easily apply these powerful libraries in their own

development through detailed expert instructor-led training and by hands-on exercises.

After finishing this course, class participants will be prepared to apply Boost to their

O p e n D D S D e v e l o p e r ’ s G u i d e x v i i

project, enabling them to more quickly produce powerful, efficient, and platform

independent applications.

For information about training dates, contact us by phone at +1.314.579.0066, via email at

training@objectcomputing.com, or visit our web site at

http://www.objectcomputing.com/training to review the current course schedule.

x v i i i O p e n D D S D e v e l o p e r ’ s G u i d e

Note

https://www.objectcomputing.com/training

CHAPTER 1

Introduction

OpenDDS is an open source implementation of the OMG Data Distribution Service (DDS) for

Real-Time Systems Specification v1.4 (OMG Document formal/2015-04-10) and the Real-

time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Specification

(DDSI-RTPS) v2.3 (OMG Document formal/2019-04-03). OpenDDS also implements the

DDS Security Specification v1.1 (OMG Document formal/2018-04-01) and DDS XTypes

v1.3 (OMG Document formal/2020-02-04). OpenDDS is sponsored by Object Computing,

Inc. (OCI) and is available at https://www.opendds.org/. This Developer’s Guide is based

on the version 3.22 release of OpenDDS.

DDS defines a service for efficiently distributing application data between participants in a

distributed application. This service is not tied to CORBA. The specification provides a

Platform Independent Model (PIM) as well as a Platform Specific Model (PSM) that maps

the PIM onto an OMG IDL implementation.

For additional details about DDS, developers should refer to the DDS specification (OMG

Document formal/2015-04-10) as it contains in-depth coverage of all the service’s features.

OpenDDS is the open-source C++ implementation of OMG’s DDS specification developed

and commercially supported by Object Computing, Inc. (OCI). It is available for download

from https://www.opendds.org/downloads.html and is compatible with the latest patch

level of OCI TAO version 2.2a (includes ACE), and the latest DOC Group release of

ACE+TAO in the ACE 6.x / TAO 2.x series.

OpenDDS currently implements the OMG DDS version 1.4 specification. See the

compliance information in or at https://www.opendds.org/ for more information.

O p e n D D S D e v e l o p e r ’ s G u i d e 1

Note

https://www.opendds.org/
https://www.opendds.org/downloads.html
https://www.opendds.org/

 Introduction

1.1. DCPS Overview
In this section we introduce the main concepts and entities of the DCPS layer and discuss

how they interact and work together.

 1.1.1 Basic Concepts
Figure 1-1 shows an overview of the DDS DCPS layer. The following subsections define the

concepts shown in this diagram.

 1.1.1.1 Domain
The domain is the fundamental partitioning unit within DCPS. Each of the other entities

belongs to a domain and can only interact with other entities in that same domain.

2 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 1-1 DCPS Conceptual Overview

DataWriter

Topic B

Publisher

Data
Transmission

Subscriber

DataReader

Domain

DataReader

Subscriber

DataReader

DataWriter

Publisher

DataWriter

Topic A

1.1. DCPS Overview

Application code is free to interact with multiple domains but must do so via separate

entities that belong to the different domains.

 1.1.1.2 DomainParticipant
A domain participant is the entry-point for an application to interact within a particular

domain. The domain participant is a factory for many of the objects involved in writing or

reading data.

 1.1.1.3 Topic
The topic is the fundamental means of interaction between publishing and subscribing

applications. Each topic has a unique name within the domain and a specific data type that

it publishes. Each topic data type can specify zero or more fields that make up its key. When

publishing data, the publishing process always specifies the topic. Subscribers request data

via the topic. In DCPS terminology you publish individual data samples for different

instances on a topic. Each instance is associated with a unique value for the key. A

publishing process publishes multiple data samples on the same instance by using the same

key value for each sample.

 1.1.1.4 DataWriter
The data writer is used by the publishing application code to pass values to the DDS. Each

data writer is bound to a particular topic. The application uses the data writer’s type-

specific interface to publish samples on that topic. The data writer is responsible for

marshaling the data and passing it to the publisher for transmission.

 1.1.1.5 Publisher
The publisher is responsible for taking the published data and disseminating it to all

relevant subscribers in the domain. The exact mechanism employed is left to the service

implementation.

 1.1.1.6 Subscriber
The subscriber receives the data from the publisher and passes it to any relevant data

readers that are connected to it.

3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Introduction

 1.1.1.7 DataReader
The data reader takes data from the subscriber, demarshals it into the appropriate type for

that topic, and delivers the sample to the application. Each data reader is bound to a

particular topic. The application uses the data reader’s type-specific interfaces to receive

the samples.

 1.1.2 Built-In Topics
The DDS specification defines a number of topics that are built-in to the DDS

implementation. Subscribing to these built-in topics gives application developers access to

the state of the domain being used including which topics are registered, which data

readers and data writers are connected and disconnected, and the QoS settings of the

various entities. While subscribed, the application receives samples indicating changes in

the entities within the domain.

The following table shows the built-in topics defined within the DDS specification:

Table 1-1 Built-in Topics

Topic Name Description

DCPSParticipant Each instance represents a domain participant.

DCPSTopic Each instance represents a normal (not built-in) topic.

DCPSPublication Each instance represents a data writer.

DCPSSubscription Each instance represents a data reader.

 1.1.3 Quality Of Service Policies
The DDS specification defines a number of Quality of Service (QoS) policies that are used by

applications to specify their QoS requirements to the service. Participants specify what

behavior they require from the service and the service decides how to achieve these

behaviors. These policies can be applied to the various DCPS entities (topic, data writer,

data reader, publisher, subscriber, domain participant) although not all policies are valid for

all types of entities.

Subscribers and publishers are matched using a request-versus-offered (RxO) model.

Subscribers request a set of policies that are minimally required. Publishers offer a set of

QoS policies to potential subscribers. The DDS implementation then attempts to match the

requested policies with the offered policies; if these policies are compatible then the

association is formed.

The QoS policies currently implemented by OpenDDS are discussed in detail in Chapter 3.

4 O p e n D D S D e v e l o p e r ’ s G u i d e

1.1. DCPS Overview

 1.1.4 Listeners
The DCPS layer defines a callback interface for each entity that allows an application

processes to “listen” for certain state changes or events pertaining to that entity. For

example, a Data Reader Listener is notified when there are data values available for

reading.

 1.1.5 Conditions
Conditions and Wait Sets allow an alternative to listeners in detecting events of interest in

DDS. The general pattern is

The application creates a specific kind of Condition object, such as a StatusCondition, and

attaches it to a WaitSet.

• The application waits on the WaitSet until one or more conditions become true.

• The application calls operations on the corresponding entity objects to extract the

necessary information.

• The DataReader interface also has operations that take a ReadCondition argument.

• QueryCondition objects are provided as part of the implementation of the Content-

Subscription Profile. The QueryCondition interface extends the ReadCondition

interface.

 1.2 OpenDDS Implementation

 1.2.1 Compliance
OpenDDS complies with the OMG DDS and the OMG DDSI-RTPS specifications. Details of

that compliance follows here. OpenDDS also implements the OMG DDS Security

specification. Details of compliance to that specification are in section 14.8. Details of

XTypes compliance are in sections 16.8 and 16.9.

 1.2.1.1 DDS Compliance
Section 2 of the DDS specification defines five compliance points for a DDS implementation:

1) Minimum Profile

2) Content-Subscription Profile

3) Persistence Profile

5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Introduction

4) Ownership Profile

5) Object Model Profile

OpenDDS complies with the entire DDS specification (including all optional profiles). This

includes the implementation of all Quality of Service policies with the following notes:

• RELIABILITY.kind = RELIABLE is supported by the RTPS_UDP transport, the TCP

transport, or the IP Multicast transport (when configured as reliable).

• TRANSPORT_PRIORITY is not implemented as changeable.

Although version 1.5 of the DDS specification is not yet published, OpenDDS incorporates

some changes planned for that version that are required for a robust implementation:

• DDS15-257: The IDL type BuiltinTopicKey_t is a struct containing an array of 16

octets

 1.2.1.2 DDSI-RTPS Compliance
The OpenDDS implementation complies with the requirements of the OMG DDSI-RTPS

specification.

 OpenDDS RTPS Implementation Notes

The OMG DDSI-RTPS specification (formal/2019-04-03) supplies statements for

implementation, but not required for compliance. The following items should be taken into

consideration when utilizing the OpenDDS RTPS functionality for transport and/or

discovery. Section numbers of the DDSI-RTPS specification are supplied with each item for

further reference.

Items not implemented in OpenDDS:

1) Writer-side content filtering (8.7.3)

OpenDDS may still drop samples that aren't needed (due to content filtering) by any

associated readers — this is done above the transport layer

2) Coherent sets for PRESENTATION QoS (8.7.5)

3) Directed writes (8.7.6)

– OpenDDS will use the Directed Write parameter if it’s present on incoming

messages (for example, messages generated by a different DDS implementation)

4) Property lists (8.7.7)

6 O p e n D D S D e v e l o p e r ’ s G u i d e

 1.2 OpenDDS Implementation

5) Original writer info for DURABLE data (8.7.8) -- this would only be used for transient and

persistent durability, which are not supported by the RTPS specification (8.7.2.2.1)

6) Key Hashes (8.7.9) are not generated, but they are optional

7) nackSuppressionDuration (Table 8.47) and heartbeatSuppressionDuration

(Table 8.62).

Items 3 and 4 above are described in the DDSI-RTPS specification. However, they do not

have a corresponding concept in the DDS specification.

 1.2.1.3 IDL Compliance
OMG IDL is used in a few different ways in the OpenDDS code base and downstream

applications that use it:

• Files that come with OpenDDS such as dds/DdsDcpsTopic.idl define parts of the

API between the middleware libraries and the application. This is known as the

OMG IDL Platform Specific Model (PSM).

• Users of OpenDDS author IDL files in addition to source code files in C++ or Java.

This section only describes the latter use.

The IDL specification (version 4.2) uses the term “building block” to define subsets of the

overall IDL grammar that may be supported by certain tools. OpenDDS supports the

following building blocks, with notes/caveats listed below each:

• Core Data Types

◦ Support for the “fixed” data type (fixed point decimal) is incomplete.

• Anonymous Types

◦ There is limited support for anonymous types when they appear as

sequence/array instantiations directly as struct field types. Using an explicitly-

named type is recommended.

• Annotations

◦ See sections 2.1.1 and 16.6 for details on which built-in annotations are

supported.

◦ User-defined annotation types are also supported.

• Extended Data Types

7 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 Introduction

◦ The integer types int8, int16, int32, and int64 along with unsigned versions of

them like uint32, are supported.

◦ The rest of the building block is not supported.

 1.2.2 Extensions To The DDS Specification
Data types, interfaces, and constants in the DDS IDL module (C++ namespace, Java

package) correspond directly to the DDS specification with very few exceptions:

• DDS::SampleInfo contains an extra field starting with “opendds_reserved”

• Type-specific DataReaders (including those for Built-in Topics) have additional

operations read_instance_w_condition() and take_instance_w_condition().

Additional extended behavior is provided by various classes and interfaces in the OpenDDS

module/namespace/package. Those include features like Recorder and Replayer (see

chapter 12) and also:

• OpenDDS::DCPS::TypeSupport adds the unregister_type() operation not found in the

DDS spec.

• OpenDDS::DCPS::ALL_STATUS_MASK, NO_STATUS_MASK, and

DEFAULT_STATUS_MASK are useful constants for the DDS::StatusMask type used

by DDS::Entity, DDS::StatusCondition, and the various create_*() operations.

 1.2.3 OpenDDS Architecture
This section gives a brief overview of the OpenDDS implementation, its features, and some

of its components. The $DDS_ROOT environment variable should point to the base directory of

the OpenDDS distribution. Source code for OpenDDS can be found under the

$DDS_ROOT/dds/ directory. DDS tests can be found under $DDS_ROOT/tests/.

 1.2.3.1 Design Philosophy
The OpenDDS implementation and API is based on a fairly strict interpretation of the OMG

IDL PSM. In almost all cases the OMG’s IDL-to-C++ Language Mapping is used to define

how the IDL in the DDS specification is mapped into the C++ APIs that OpenDDS exposes

to the client.

The main deviation from the OMG IDL PSM is that local interfaces are used for the entities

and various other interfaces. These are defined as unconstrained (non-local) interfaces in

the DDS specification. Defining them as local interfaces improves performance, reduces

8 O p e n D D S D e v e l o p e r ’ s G u i d e

 1.2 OpenDDS Implementation

memory usage, simplifies the client’s interaction with these interfaces, and makes it easier

for clients to build their own implementations.

 1.2.3.2 Extensible Transport Framework (ETF)
OpenDDS uses the IDL interfaces defined by the DDS specification to initialize and control

service usage. Data transmission is accomplished via an OpenDDS-specific transport

framework that allows the service to be used with a variety of transport protocols. This is

referred to as pluggable transports and makes the extensibility of OpenDDS an important

part of its architecture. OpenDDS currently supports TCP/IP, UDP/IP, IP multicast, shared-

memory, and RTPS_UDP transport protocols as shown in Figure 1-2. Transports are

typically specified via configuration files and are attached to various entities in the publisher

and subscriber processes. Refer to Section 7.4.4 for details on configuring ETF components.

The ETF enables application developers to implement their own customized transports.

Implementing a custom transport involves specializing a number of classes defined in the

transport framework. The udp transport provides a good foundation developers may use

when creating their own implementation. See the $DDS_ROOT/dds/DCPS/transport/udp/

directory for details.

 1.2.3.3 DDS Discovery
DDS applications must discover one another via some central agent or through some

distributed scheme. An important feature of OpenDDS is that DDS applications can be

configured to perform discovery using the DCPSInfoRepo or RTPS discovery, but utilize a

different transport type for data transfer between data writers and data readers. The OMG

9 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 1-2 OpenDDS Extensible Transport Framework

Application A

DCPS Publisher

QoS

Transport Discovery

Application B

Network Pluggable Discovery

Centralized Repository (InfoRepo),

Peer-to-Peer (RTPS)

Pluggable Transports

TCP, UDP, Multicast,
Shared-Memory,
RTPS_UDP

DCPS Subscriber

QoS

Transport Discovery

 Introduction

DDS specification (formal/2015-04-10) leaves the details of discovery to the

implementation. In the case of interoperability between DDS implementations, the OMG

DDSI-RTPS(formal/2014-09-01) specification provides requirements for a peer-to-peer

style of discovery.

OpenDDS provides two options for discovery.

1) Information Repository: a centralized repository style that runs as a separate process

allowing publishers and subscribers to discover one another centrally or

2) RTPS Discovery: a peer-to-peer style of discovery that utilizes the RTPS protocol to

advertise availability and location information.

Interoperability with other DDS implementations must utilize the peer-to-peer method, but

can be useful in OpenDDS-only deployments.

 Centralized Discovery with DCPSInfoRepo

OpenDDS implements a standalone service called the DCPS Information Repository

(DCPSInfoRepo) to achieve the centralized discovery method. It is implemented as a CORBA

server. When a client requests a subscription for a topic, the DCPS Information Repository

locates the topic and notifies any existing publishers of the location of the new subscriber.

The DCPSInfoRepo process needs to be running whenever OpenDDS is being used in a non-

RTPS configuration. An RTPS configuration does not use the DCPSInfoRepo. The

DCPSInfoRepo is not involved in data propagation, its role is limited in scope to OpenDDS

applications discovering one another.

1 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 1.2 OpenDDS Implementation

Application developers are free to run multiple information repositories with each managing

their own non-overlapping sets of DCPS domains.

It is also possible to operate domains with more than a single repository, thus forming a

distributed virtual repository. This is known as Repository Federation. In order for

individual repositories to participate in a federation, each one must specify its own

federation identifier value (a 32-bit numeric value) upon start-up. See 9.2 for further

information about repository federations.

 Peer-to-Peer Discovery with RTPS

DDS applications requiring a Peer-to-Peer discovery pattern can be accommodated by

OpenDDS capabilities. This style of discovery is accomplished only through the use of the

RTPS protocol as of the current release. This simple form of discovery is accomplished

through simple configuration of DDS application data readers and data writers running in

application processes as shown in Figure 1-4. As each participating process activates the

DDSI-RTPS discovery mechanisms in OpenDDS for their data readers and writers, network

endpoints are created with either default or configured network ports such that DDS

participants can begin advertising the availability of their data readers and data writers.

After a period of time, those seeking one another based on criteria will find each other and

establish a connection based on the configured pluggable transport as discussed in

1 1 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 1-3: Centralized Discovery with OpenDDS InfoRepo

 Introduction

Extensible Transport Framework (ETF). A more detailed description of this flexible

configuration approach is discussed in Section 7.4.1.1 and Section 7.4.5.5.

The following are additional implementation limits that developers need to take into

consideration when developing and deploying applications that use RTPS discovery:

1) Domain IDs should be between 0 and 231 (inclusive) due to the way UDP ports are

assigned to domain IDs. In each OpenDDS process, up to 120 domain participants are

supported in each domain.

2) Topic names and type identifiers are limited to 256 characters.

3) OpenDDS's native multicast transport does not work with RTPS Discovery due to the

way GUIDs are assigned (a warning will be issued if this is attempted).

For more details in how RTPS discovery occurs, a very good reference to read can be found

in Section 8.5 of the Real-time Publish-Subscribe Wire Protocol DDS Interoperability Wire

Protocol Specification (DDSI-RTPS) v2.2 (OMG Document formal/2014-09-01).

 1.2.3.4 Threading
OpenDDS creates its own ORB (when one is required) as well as a separate thread upon

which to run that ORB. It also uses its own threads to process incoming and outgoing

transport I/O. A separate thread is created to cleanup resources upon unexpected

1 2 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 1-4: Peer-to-peer Discovery with RTPS

 1.2 OpenDDS Implementation

connection closure. Your application may get called back from these threads via the

Listener mechanism of DCPS.

When publishing a sample via DDS, OpenDDS normally attempts to send the sample to any

connected subscribers using the calling thread. If the send call blocks, then the sample may

be queued for sending on a separate service thread. This behavior depends on the QoS

policies described in Chapter 3.

All incoming data in the subscriber is read by a service thread and queued for reading by

the application. DataReader listeners are called from the service thread.

 1.2.3.5 Configuration
OpenDDS includes a file-based configuration framework for configuring both global items

such as debug level, memory allocation, and discovery, as well as transport implementation

details for publishers and subscribers. Configuration can also be achieved directly in code,

however, it is recommended that configuration be externalized for ease of maintenance and

reduction in runtime errors. The complete set of configuration options are described in

Chapter 7.

 1.3 Installation
The steps on how to build OpenDDS can be found in $DDS_ROOT/INSTALL.md.

To build OpenDDS with DDS Security, see section 14.1 below.

To avoid compiling OpenDDS code that you will not be using, there are certain features than

can be excluded from being built. The features are discussed below.

Users requiring a small-footprint configuration or compatibility with safety-oriented

platforms should consider using the OpenDDS Safety Profile, which is described in chapter

13 of this guide.

 1.3.1 Building With A Feature Enabled Or Disabled
Most features are supported by the configure script. The configure script creates config

files with the correct content and then runs MPC. If you are using the configure script, run

it with the “--help” command line option and look for the feature you wish to enable/disable.

If you are not using the configure script, continue reading below for instructions on running

MPC directly.

1 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Introduction

For the features described below, MPC is used for enabling (the default) a feature or

disabling the feature. For a feature named feature, the following steps are used to disable

the feature from the build:

1) Use the command line “features” argument to MPC:

mwc.pl -type <type> -features feature=0 DDS.mwc

Or alternatively, add the line feature=0 to the file

$ACE_ROOT/bin/MakeProjectCreator/config/default.features and regenerate the

project files using MPC.

2) If you are using the gnuace MPC project type (which is the case if you will be using GNU

make as your build system), add line “feature=0” to the file

$ACE_ROOT/include/makeinclude/platform_macros.GNU.

To explicitly enable the feature, use feature=1 above.

You can also use the $DDS_ROOT/configure script to enable or disable features. To disable

the feature, pass --no-feature to the script, to enable pass --feature. In this case ‘-’ is

used instead of ‘_’ in the feature name. For example, to disable feature

content_subscription discussed below, pass --no-content-subscription to the

configure script.

 1.3.2 Disabling The Building Of Built-In Topic
Support
Feature Name: built_in_topics

You can reduce the footprint of the core DDS library by up to 30% by disabling Built-in Topic

Support. See Chapter 6 for a description of Built-In Topics.

 1.3.3 Disabling The Building Of Compliance Profile
Features
The DDS specification defines compliance profiles to provide a common terminology for

indicating certain feature sets that a DDS implementation may or may not support. These

profiles are given below, along with the name of the MPC feature to use to disable support

for that profile or components of that profile.

1 4 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 1.3 Installation

Many of the profile options involve QoS settings. If you attempt to use a QoS value that is

incompatible with a disabled profile, a runtime error will occur. If a profile involves a class,

a compile time error will occur if you try to use the class and the profile is disabled.

 1.3.3.1 Content-Subscription Profile
Feature Name: content_subscription

This profile adds the classes ContentFilteredTopic, QueryCondition, and MultiTopic

discussed in Chapter 5.

In addition, individual classes can be excluded by using the features given in the table

below.

Table 1-2: Content-Subscription Class Features

Class Feature

ContentFilteredTopic content_filtered_topic

QueryCondition query_condition

MultiTopic multi_topic

 1.3.3.2 Persistence Profile
Feature Name: persistence_profile

This profile adds the QoS policy DURABILITY_SERVICE and the settings ‘TRANSIENT’ and

‘PERSISTENT’ of the DURABILITY QoS policy kind.

 1.3.3.3 Ownership Profile
Feature Name: ownership_profile

This profile adds:

• the setting ‘EXCLUSIVE’ of the OWNERSHIP kind

• support for the OWNERSHIP_STRENGTH policy

• setting a depth > 1 for the HISTORY QoS policy.

Some users may wish to exclude support for the Exclusive OWNERSHIP policy and its

associated OWNERSHIP_STRENGTH without impacting use of HISTORY. In order to

support this configuration, OpenDDS also has the MPC feature ownership_kind_exclusive

(configure script option --no-ownership-kind-exclusive).

1 5 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 Introduction

 1.3.3.4 Object Model Profile
Feature Name: object_model_profile

This profile includes support for the PRESENTATION access_scope setting of ‘GROUP’.

Currently, the PRESENTATION access_scope of ‘TOPIC’ is also excluded when

object_model_profile is disabled.

 1.4 Building Applications that use
OpenDDS
This section applies to any C++ code that directly or indirectly includes OpenDDS headers.

For Java applications, see Chapter 10 below.

C++ source code that includes OpenDDS headers can be built using either build system:

MPC or CMake.

 1.4.1 MPC: The Makefile, Project, And Workspace
Creator
OpenDDS is itself built with MPC, so development systems that are set up to use OpenDDS

already have MPC available. The OpenDDS configure script creates a “setenv” script with

environment settings (setenv.cmd on Windows; setenv.sh on Linux/macOS). This

environment contains the PATH and MPC_ROOT settings necessary to use MPC.

MPC’s source tree (in MPC_ROOT) contains a “docs” directory with both HTML and plain text

documentation (USAGE and README files).

The example walk-through in section 2.1 uses MPC as its build system. The OpenDDS

source tree contains many tests and examples that are built with MPC. These can be used

as starting points for application MPC files.

 1.4.2 CMake
Applications can also be built with CMake (https://cmake.org). See the included

documentation in the OpenDDS source tree: docs/cmake.md

The OpenDDS source tree also includes examples of using CMake. They are listed in the

cmake.md file.

1 6 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

https://cmake.org/

 1.4 Building Applications that use OpenDDS

 1.4.3 Custom Build Systems
Users of OpenDDS are strongly encouraged to select one of the two options listed above

(MPC or CMake) to generate consistent build files on any supported platform. If this is not

possible, users of OpenDDS must make sure that all code generator, compiler, and linker

settings in the custom build setup result in API- and ABI-compatible code. To do this, start

with an MPC or CMake-generated project file (makefile or Visual Studio project file) and

make sure all relevant settings are represented in the custom build system. This is often

done through a combination of inspecting the project file and running the build with verbose

output to see how the toolchain (code generators, compiler, linker) is invoked. Contact

Object Computing, Inc. (OCI) via https://objectcomputing.com/products/opendds/consulting-

support to have our expert software engineers work on this for you.

1 7 O p e n D D S D e v e l o p e r ’ s G u i d e

https://objectcomputing.com/products/opendds/consulting-support
https://objectcomputing.com/products/opendds/consulting-support

CHAPTER 2

Getting Started

 2.1 Using DCPS
This chapter focuses on an example application using DCPS to distribute data from a single

publisher process to a single subscriber process. It is based on a simple messenger

application where a single publisher publishes messages and a single subscriber subscribes

to them. We use the default QoS properties and the default TCP/IP transport. Full source

code for this example may be found under the

$DDS_ROOT/DevGuideExamples/DCPS/Messenger/ directory. Additional DDS and DCPS

features are discussed in later chapters.

 2.1.1 Defining Data Types With IDL

 2.1.1.1 Identifying Topic Types
Each data type used by DDS is defined using OMG Interface Definition Language (IDL).

OpenDDS uses IDL annotations1 to identify the data types that it transmits and processes.

These data types are processed by the TAO IDL compiler and the OpenDDS IDL compiler to

generate the necessary code to transmit data of these types with OpenDDS. Here is the IDL

file that defines our Message data type:

module Messenger {

1 For backwards compatibility, OpenDDS also parses #pragma directives which were used before release 3.14. This

guide will describe IDL annotations only.

1 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

 @topic
 struct Message {
 string from;
 string subject;
 @key long subject_id;
 string text;
 long count;
 };
};

The @topic annotation marks a data type that can be used as a topic’s type. This must be a

structure or a union. The structure or union may contain basic types (short, long, float, etc.),

enumerations, strings, sequences, arrays, structures, and unions. See section 1.2.1.3 for

more details on the use of IDL for OpenDDS topic types. The IDL above defines the

structure Message in the Messenger module for use in this example.

 2.1.1.2 Keys
The @key annotation identifies a field that is used as a key for this topic type. A topic type

may have zero or more key fields. These keys are used to identify different DDS Instances

within a topic. Keys can be of scalar type, structures or unions containing key fields, or

arrays of any of these constructs.

Multiple keys are specified with separate @key annotations. In the above example, we

identify the subject_id member of Messenger::Message as a key. Each sample published with

a unique subject_id value will be defined as belonging to a different DDS Instance within

the same topic. Since we are using the default QoS policies, subsequent samples with the

same subject_id value are treated as replacement values for that DDS Instance.

@key can be applied to a structure field of the following types:

• Any primitive, such as booleans, integers, characters, and strings.

• Other structures that have a defined key or set of keys. For example:

struct StructA {
 @key long key;
};

struct StructB {
 @key StructA main_info;
 long other_info;
};

@topic
struct StructC {
 @key StructA keya; // keya.key is one key
 @key StructB keyb; // keyb.main_info.key is another
 DDS::OctetSeq data;
};

In this example, every type from the key marked on the topic type down to what

2 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.1 Using DCPS

primitive data types to use as the key is annotated with @key. That isn’t strictly

necessary though, as the next section shows.

• Other structures that don’t have any defined keys. In the following example, it’s implied that

all the fields in InnerStruct are keys.

struct InnerStruct {
 long a;
 short b;
 char c;
};

@topic
struct OuterStruct {
 @key InnerStruct value;

// value.a, value.b, and value.c are all keys
};

If none of the fields in a struct are marked with @key or @key(TRUE), then when the struct is

used in another struct and marked as a key, all the fields in the struct are assumed to keys.

Fields marked with @key(FALSE) are always excluded from being a key, such as in this

example:

struct InnerStruct {
 long a;
 short b;
 @key(FALSE) char c;
};

@topic
struct OuterStruct {
 @key InnerStruct value;

 // Now just value.a and value.b are the keys
};

• Unions can also be used as keys if their discriminator is marked as a key. There is an

example of a keyed union topic type in the next section, but keep in mind a union being used

as a key doesn’t have to be a topic type.

• Arrays of any of the previous data types. @key can’t be applied to sequences, even if the

base type would be valid in an array. Also @key, when applied to arrays, it makes every

element in the array part of the key. They can’t be applied to individual array elements.

 2.1.1.3 Union Topic Types
Unions can be used as topic types. Here is an example:

enum TypeKind {
 STRING_TYPE,
 LONG_TYPE,
 FLOAT_TYPE
};

@topic

2 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

union MyUnionType switch (@key TypeKind) {
case STRING_TYPE:
 string string_value;
case LONG_TYPE:
 long long_value;
case FLOAT_TYPE:
 float float_value;
};

Unions can be keyed like structures, but only the union discriminator can be a key, so the

set of possible DDS Instances of topics using keyed unions are values of the discriminator.

Designating a key for a union topic type is done by putting @key before the discriminator

type like in the example above. Like structures, it is also possible to have no key fields, in

which case @key would be omitted and there would be only one DDS Instance.

 2.1.1.4 Topic Types vs. Nested Types
In addition to @topic, the set of IDL types OpenDDS can use can also be controlled using

@nested and @default_nested. Types that are “nested” are the opposite of topic types; they

can’t be used for the top-level type of a topic, but they can be nested inside the top-level

type (at any level of nesting). All types are nested by default in OpenDDS to reduce the code

generated for type support, but there a number of ways to change this:

• The type can be annotated with @topic (see section 2.1.1.1), or with

@nested(FALSE), which is equivalent to @topic.

• The enclosing module can be annotated with @default_nested(FALSE).

• The global default for opendds_idl can be changed by adding --no-default-

nested, in which case it would be as if all valid types were marked with @topic. If

desired for IDL compatibility with other DDS implementations or based on

preference, this can be done through the build system:

• When using MPC, add dcps_ts_flags += --no-default-nested to the

project.

• When using CMake, this can be done by setting either the

OPENDDS_DEFAULT_NESTED global variable to FALSE or adding --no-default-

nested to the OPENDDS_IDL_OPTIONS parameter for

OPENDDS_TARGET_SOURCES.

See docs/cmake.md in the source for more information about using

OpenDDS with CMake.

In cases where the module default is not nested, you can reverse this by using @nested or

@nested(TRUE) for structures/unions and @default_nested or @default_nested(TRUE) for

2 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.1 Using DCPS

modules. NOTE: the @topic annotation doesn’t take a boolean argument, so @topic(FALSE)

would cause an error in the OpenDDS IDL Compiler.

 2.1.2 Processing The IDL
This section uses the OMG IDL-to-C++ mapping (“C++ classic”) as part of the walk-

through. OpenDDS also supports the OMG IDL-to-C++11 mapping, see section 8.2 for

details.

The OpenDDS IDL is first processed by the TAO IDL compiler.

tao_idl Messenger.idl

In addition, we need to process the IDL file with the OpenDDS IDL compiler to generate the

serialization and key support code that OpenDDS requires to marshal and demarshal the

Message, as well as the type support code for the data readers and writers. This IDL

compiler is located in $DDS_ROOT/bin and generates three files for each IDL file

processed. The three files all begin with the original IDL file name and would appear as

follows:

• <filename>TypeSupport.idl

• <filename>TypeSupportImpl.h

• <filename>TypeSupportImpl.cpp

For example, running opendds_idl as follows

opendds_idl Messenger.idl

generates MessengerTypeSupport.idl, MessengerTypeSupportImpl.h, and

MessengerTypeSupportImpl.cpp. The IDL file contains the MessageTypeSupport,

MessageDataWriter, and MessageDataReader interface definitions. These are type-specific

DDS interfaces that we use later to register our data type with the domain, publish samples

of that data type, and receive published samples. The implementation files contain

implementations for these interfaces. The generated IDL file should itself be compiled with

the TAO IDL compiler to generate stubs and skeletons. These and the implementation file

should be linked with your OpenDDS applications that use the Message type. The OpenDDS

IDL compiler has a number of options that specialize the generated code. These options are

described in Chapter 8.

Typically, you do not directly invoke the TAO or OpenDDS IDL compilers as above, but let

your build system do it for you. Two different build systems are supported for projects that

use OpenDDS:

2 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

• MPC, the “Make Project Creator” which is used to build OpenDDS itself and the

majority of its included tests and examples

• CMake, a build system that’s commonly used across the industry (cmake.org)

Even if you will eventually use some custom build system that’s not one of the two listed

above, start by building an example OpenDDS application using one of the supported build

systems and then migrate the code generator command lines, compiler options, etc., to the

custom build system.

The remainder of this section will assume MPC. For more details on using CMake, see the

included documentation in the OpenDDS repository: docs/cmake.md

The code generation process is simplified when using MPC, by inheriting from the dcps base

project. Here is the MPC file section common to both the publisher and subscriber

project(*idl): dcps {
 // This project ensures the common components get built first.

 TypeSupport_Files {
 Messenger.idl
 }
 custom_only = 1
}

The dcps parent project adds the Type Support custom build rules. The TypeSupport_Files

section above tells MPC to generate the Message type support files from Messenger.idl

using the OpenDDS IDL complier. Here is the publisher section:

project(*Publisher): dcpsexe_with_tcp {
 exename = publisher
 after += *idl

 TypeSupport_Files {
 Messenger.idl
 }

 Source_Files {
 Publisher.cpp
 }
}

The dcpsexe_with_tcp project links in the DCPS library.

For completeness, here is the subscriber section of the MPC file:

project(*Subscriber): dcpsexe_with_tcp {

 exename = subscriber
 after += *idl

 TypeSupport_Files {
 Messenger.idl
 }

 Source_Files {
 Subscriber.cpp

2 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.1 Using DCPS

 DataReaderListenerImpl.cpp
 }
}

 2.1.3 A Simple Message Publisher
In this section we describe the steps involved in setting up a simple OpenDDS publication

process. The code is broken into logical sections and explained as we present each section.

We omit some uninteresting sections of the code (such as #include directives, error

handling, and cross-process synchronization). The full source code for this sample publisher

is found in the Publisher.cpp and Writer.cpp files in

$DDS_ROOT/DevGuideExamples/DCPS/Messenger/.

 2.1.3.1 Initializing the Participant
The first section of main() initializes the current process as an OpenDDS participant.

int main (int argc, char *argv[]) {
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(42, // domain ID
 PARTICIPANT_QOS_DEFAULT,
 0, // No listener required
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!participant) {
 std::cerr << "create_participant failed." << std::endl;
 return 1;
 }

The TheParticipantFactoryWithArgs macro is defined in Service_Participant.h

and initializes the Domain Participant Factory with the command line arguments. These

command line arguments are used to initialize the ORB that the OpenDDS service uses as

well as the service itself. This allows us to pass ORB_init() options on the command line

as well as OpenDDS configuration options of the form -DCPS*. Available OpenDDS options

are fully described in Chapter 7.

The create_participant()operation uses the domain participant factory to register

this process as a participant in the domain specified by the ID of 42. The participant uses

the default QoS policies and no listeners. Use of the OpenDDS default status mask ensures

all relevant communication status changes (e.g., data available, liveliness lost) in the

middleware are communicated to the application (e.g., via callbacks on listeners).

Users may define any number of domains using IDs in the range (0x0 ~ 0x7FFFFFFF). All

other values are reserved for internal use by the implementation.

2 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

The Domain Participant object reference returned is then used to register our Message data

type.

 2.1.3.2 Registering the Data Type and Creating a Topic
First, we create a MessageTypeSupportImpl object, then register the type with a type

name using the register_type() operation. In this example, we register the type with a nil

string type name, which causes the MessageTypeSupport interface repository identifier to

be used as the type name. A specific type name such as “Message” can be used as well.

 Messenger::MessageTypeSupport_var mts =
 new Messenger::MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant, "")) {
 std::cerr << "register_type failed." << std::endl;
 return 1;
 }

Next, we obtain the registered type name from the type support object and create the topic

by passing the type name to the participant in the create_topic() operation.

 CORBA::String_var type_name = mts->get_type_name ();

 DDS::Topic_var topic =
 participant->create_topic ("Movie Discussion List",
 type_name,
 TOPIC_QOS_DEFAULT,
 0, // No listener required
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!topic) {
 std::cerr << "create_topic failed." << std::endl;
 return 1;
 }

We have created a topic named “Movie Discussion List” with the registered type and the

default QoS policies.

 2.1.3.3 Creating a Publisher
Now, we are ready to create the publisher with the default publisher QoS.

 DDS::Publisher_var pub =
 participant->create_publisher(PUBLISHER_QOS_DEFAULT,
 0, // No listener required
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!pub) {
 std::cerr << "create_publisher failed." << std::endl;
 return 1;
 }

 2.1.3.4 Creating a DataWriter and Waiting for the Subscriber
With the publisher in place, we create the data writer.

2 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.1 Using DCPS

 // Create the datawriter
 DDS::DataWriter_var writer =
 pub->create_datawriter(topic,
 DATAWRITER_QOS_DEFAULT,
 0, // No listener required
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!writer) {
 std::cerr << "create_datawriter failed." << std::endl;
 return 1;
 }

When we create the data writer we pass the topic object reference, the default QoS policies,

and a null listener reference. We now narrow the data writer reference to a

MessageDataWriter object reference so we can use the type-specific publication

operations.

 Messenger::MessageDataWriter_var message_writer =
 Messenger::MessageDataWriter::_narrow(writer);

The example code uses conditions and wait sets so the publisher waits for the

subscriber to become connected and fully initialized. In a simple example like this, failure to

wait for the subscriber may cause the publisher to publish its samples before the subscriber

is connected.

The basic steps involved in waiting for the subscriber are:

1) Get the status condition from the data writer we created

2) Enable the Publication Matched status in the condition

3) Create a wait set

4) Attach the status condition to the wait set

5) Get the publication matched status

6) If the current count of matches is one or more, detach the condition from the wait set

and proceed to publication

7) Wait on the wait set (can be bounded by a specified period of time)

8) Loop back around to step 5)

Here is the corresponding code:

 // Block until Subscriber is available
 DDS::StatusCondition_var condition =

writer->get_statuscondition();
 condition->set_enabled_statuses(
 DDS::PUBLICATION_MATCHED_STATUS);

2 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

 DDS::WaitSet_var ws = new DDS::WaitSet;
 ws->attach_condition(condition);

 while (true) {
 DDS::PublicationMatchedStatus matches;
 if (writer->get_publication_matched_status(matches)
 != DDS::RETCODE_OK) {
 std::cerr << "get_publication_matched_status failed!"
 << std::endl;
 return 1;
 }

 if (matches.current_count >= 1) {
 break;
 }

 DDS::ConditionSeq conditions;
 DDS::Duration_t timeout = { 60, 0 };
 if (ws->wait(conditions, timeout) != DDS::RETCODE_OK) {
 std::cerr << "wait failed!" << std::endl;
 return 1;
 }

 }

 ws->detach_condition(condition);

For more details about status, conditions, and wait sets, see Chapter 4.

 2.1.3.5 Sample Publication
The message publication is quite straightforward:

 // Write samples
 Messenger::Message message;
 message.subject_id = 99;
 message.from = "Comic Book Guy";
 message.subject = "Review";
 message.text = "Worst. Movie. Ever.";
 message.count = 0;
 for (int i = 0; i < 10; ++i) {
 DDS::ReturnCode_t error = message_writer->write(message,

 DDS::HANDLE_NIL);
 ++message.count;
 ++message.subject_id;
 if (error != DDS::RETCODE_OK) {
 // Log or otherwise handle the error condition
 return 1;
 }
 }

For each loop iteration, calling write() causes a message to be distributed to all connected

subscribers that are registered for our topic. Since the subject_id is the key for Message,

each time subject_id is incremented and write() is called, a new instance is created (see

1.1.1.3). The second argument to write() specifies the instance on which we are publishing

the sample. It should be passed either a handle returned by register_instance() or

DDS::HANDLE_NIL. Passing a DDS::HANDLE_NIL value indicates that the data writer should

2 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.1 Using DCPS

determine the instance by inspecting the key of the sample. See Section 2.2.1 for details

on using instance handles during publication.

 2.1.4 Setting Up The Subscriber
Much of the subscriber’s code is identical or analogous to the publisher that we just finished

exploring. We will progress quickly through the similar parts and refer you to the discussion

above for details. The full source code for this sample subscriber is found in the

Subscriber.cpp and DataReaderListener.cpp files in

$DDS_ROOT/DevGuideExamples/DCPS/Messenger/.

 2.1.4.1 Initializing the Participant
The beginning of the subscriber is identical to the publisher as we initialize the service and

join our domain:

int main (int argc, char *argv[])
{
 try {
 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);
 DDS::DomainParticipant_var participant =
 dpf->create_participant(42, // Domain ID
 PARTICIPANT_QOS_DEFAULT,
 0, // No listener required
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!participant) {
 std::cerr << "create_participant failed." << std::endl;
 return 1;
 }

 2.1.4.2 Registering the Data Type and Creating a Topic
Next, we initialize the message type and topic. Note that if the topic has already been

initialized in this domain with the same data type and compatible QoS, the create_topic()

invocation returns a reference corresponding to the existing topic. If the type or QoS

specified in our create_topic() invocation do not match that of the existing topic then the

invocation fails. There is also a find_topic() operation our subscriber could use to simply

retrieve an existing topic.

 Messenger::MessageTypeSupport_var mts =
 new Messenger::MessageTypeSupportImpl();
 if (DDS::RETCODE_OK != mts->register_type(participant, "")) {
 std::cerr << "Failed to register the MessageTypeSupport." << std::endl;
 return 1;
 }

 CORBA::String_var type_name = mts->get_type_name ();

 DDS::Topic_var topic =
 participant->create_topic("Movie Discussion List",
 type_name,

2 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

 TOPIC_QOS_DEFAULT,
 0, // No listener required
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!topic) {
 std::cerr << "Failed to create_topic." << std::endl;
 return 1;
 }

 2.1.4.3 Creating the subscriber
Next, we create the subscriber with the default QoS.

 // Create the subscriber
 DDS::Subscriber_var sub =
 participant->create_subscriber(SUBSCRIBER_QOS_DEFAULT,
 0, // No listener required
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!sub) {
 std::cerr << "Failed to create_subscriber." << std::endl;
 return 1;
 }

 2.1.4.4 Creating a DataReader and Listener
We need to associate a listener object with the data reader we create, so we can use it to

detect when data is available. The code below constructs the listener object. The

DataReaderListenerImpl class is shown in the next subsection.

 DDS::DataReaderListener_var listener(new DataReaderListenerImpl);

The listener is allocated on the heap and assigned to a DataReaderListener_var object. This

type provides reference counting behavior so the listener is automatically cleaned up when

the last reference to it is removed. This usage is typical for heap allocations in OpenDDS

application code and frees the application developer from having to actively manage the

lifespan of the allocated objects.

Now we can create the data reader and associate it with our topic, the default QoS

properties, and the listener object we just created.

 // Create the Datareader
 DDS::DataReader_var dr =
 sub->create_datareader(topic,
 DATAREADER_QOS_DEFAULT,
 listener,
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);
 if (!dr) {
 std::cerr << "create_datareader failed." << std::endl;
 return 1;
 }

This thread is now free to perform other application work. Our listener object will be called

on an OpenDDS thread when a sample is available.

3 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.1 Using DCPS

 2.1.5 The Data Reader Listener Implementation
Our listener class implements the DDS::DataReaderListener interface defined by the DDS

specification. The DataReaderListener is wrapped within a DCPS::LocalObject which

resolves ambiguously-inherited members such as _narrow and _ptr_type. The interface

defines a number of operations we must implement, each of which is invoked to inform us of

different events. The OpenDDS::DCPS::DataReaderListener defines operations for

OpenDDS’s special needs such as disconnecting and reconnected event updates. Here is the

interface definition:

module DDS {
 local interface DataReaderListener : Listener {
 void on_requested_deadline_missed(in DataReader reader,
 in RequestedDeadlineMissedStatus status);
 void on_requested_incompatible_qos(in DataReader reader,
 in RequestedIncompatibleQosStatus status);
 void on_sample_rejected(in DataReader reader,
 in SampleRejectedStatus status);
 void on_liveliness_changed(in DataReader reader,
 in LivelinessChangedStatus status);
 void on_data_available(in DataReader reader);
 void on_subscription_matched(in DataReader reader,
 in SubscriptionMatchedStatus status);
 void on_sample_lost(in DataReader reader, in SampleLostStatus status);
 };
};

Our example listener class stubs out most of these listener operations with simple print

statements. The only operation that is really needed for this example is

on_data_available() and it is the only member function of this class we need to explore.

void DataReaderListenerImpl::on_data_available(DDS::DataReader_ptr reader)
{
 ++num_reads_;

 try {
 Messenger::MessageDataReader_var reader_i =
 Messenger::MessageDataReader::_narrow(reader);
 if (!reader_i) {
 std::cerr << "read: _narrow failed." << std::endl;
 return;
 }

The code above narrows the generic data reader passed into the listener to the type-specific

MessageDataReader interface. The following code takes the next sample from the message

reader. If the take is successful and returns valid data, we print out each of the message’s

fields.

 Messenger::Message message;
 DDS::SampleInfo si;
 DDS::ReturnCode_t status = reader_i->take_next_sample(message, si);

 if (status == DDS::RETCODE_OK) {

 if (si.valid_data == 1) {

 std::cout << "Message: subject = " << message.subject.in() << std::endl

3 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

 << " subject_id = " << message.subject_id << std::endl
 << " from = " << message.from.in() << std::endl
 << " count = " << message.count << std::endl
 << " text = " << message.text.in() << std::endl;
 }
 else if (si.instance_state == DDS::NOT_ALIVE_DISPOSED_INSTANCE_STATE)
 {
 std::cout << "instance is disposed" << std::endl;
 }
 else if (si.instance_state == DDS::NOT_ALIVE_NO_WRITERS_INSTANCE_STATE)
 {
 std::cout << "instance is unregistered" << std::endl;
 }
 else
 {
 std::cerr << "ERROR: received unknown instance state "
 << si.instance_state << std::endl;
 }
 } else if (status == DDS::RETCODE_NO_DATA) {
 cerr << "ERROR: reader received DDS::RETCODE_NO_DATA!" << std::endl;
 } else {
 cerr << "ERROR: read Message: Error: " << status << std::endl;
 }

Note the sample read may contain invalid data. The valid_data flag indicates if the sample

has valid data. There are two samples with invalid data delivered to the listener callback for

notification purposes. One is the dispose notification, which is received when the

DataWriter calls dispose() explicitly. The other is the unregistered notification, which is

received when the DataWriter calls unregister() explicitly. The dispose notification is

delivered with the instance state set to NOT_ALIVE_DISPOSED_INSTANCE_STATE and the

unregister notification is delivered with the instance state set to

NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.

If additional samples are available, the service calls this function again. However, reading

values a single sample at a time is not the most efficient way to process incoming data. The

Data Reader interface provides a number of different options for processing data in a more

efficient manner. We discuss some of these operations in Section 2.2.

 2.1.6 Cleaning Up In OpenDDS Clients
After we are finished in the publisher and subscriber, we can use the following code to clean

up the OpenDDS-related objects:

 participant->delete_contained_entities();
 dpf->delete_participant(participant);
 TheServiceParticipant->shutdown ();

The domain participant’s delete_contained_entities() operation deletes all the topics,

subscribers, and publishers created with that participant. Once this is done, we can use the

domain participant factory to delete our domain participant.

Since the publication and subscription of data within DDS is decoupled, data is not

guaranteed to be delivered if a publication is disassociated (shutdown) prior to all data that

3 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.1 Using DCPS

has been sent having been received by the subscriptions. If the application requires that all

published data be received, the wait_for_acknowledgments() operation is available to

allow the publication to wait until all written data has been received. Data readers must

have a RELIABLE setting for the RELIABILITY QoS (which is the default) in order for

wait_for_acknowledgments() to work. This operation is called on individual DataWriters

and includes a timeout value to bound the time to wait. The following code illustrates the

use of wait_for_acknowledgments() to block for up to 15 seconds to wait for subscriptions

to acknowledge receipt of all written data:

 DDS::Duration_t shutdown_delay = {15, 0};
 DDS::ReturnCode_t result;
 result = writer->wait_for_acknowledgments(shutdown_delay);
 if(result != DDS::RETCODE_OK) {
 std::cerr << "Failed while waiting for acknowledgment of "
 << "data being received by subscriptions, some data "
 << "may not have been delivered." << std::endl;
 }

 2.1.7 Running The Example
We are now ready to run our simple example. Running each of these commands in its own

window should enable you to most easily understand the output.

First we will start a DCPSInfoRepo service so our publishers and subscribers can find one

another.

This step is not necessary if you are using peer-to-peer discovery by configuring your

environment to use RTPS discovery.

The DCPSInfoRepo executable is found in $DDS_ROOT/bin/DCPSInfoRepo. When we start the

DCPSInfoRepo we need to ensure that publisher and subscriber application processes can

also find the started DCPSInfoRepo. This information can be provided in one of three ways:

a.) parameters on the command line , b.) generated and placed in a shared file for

applications to use, or c.) parameters placed in a configuration file for other processes to

use. For our simple example here we will use option ‘b’ by generating the location

properties of the DCPSInfoRepo into a file so that our simple publisher and subscriber can

read it in and connect to it.

From your current directory type:

Windows:

%DDS_ROOT%\bin\DCPSInfoRepo -o simple.ior

Unix:

$DDS_ROOT/bin/DCPSInfoRepo -o simple.ior

3 3 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 Getting Started

The -o parameter instructs the DCPSInfoRepo to generate its connection information to the

file simple.ior for use by the publisher and subscriber. In a separate window navigate to

the same directory that contains the simple.ior file and start the subscriber application in

our example by typing:

Windows:

subscriber -DCPSInfoRepo file://simple.ior

Unix:

./subscriber -DCPSInfoRepo file://simple.ior

The command line parameters direct the application to use the specified file to locate the

DCPSInfoRepo. Our subscriber is now waiting for messages to be sent, so we will now start

the publisher in a separate window with the same parameters:

Windows:

publisher -DCPSInfoRepo file://simple.ior

Unix

./publisher -DCPSInfoRepo file://simple.ior

The publisher connects to the DCPSInfoRepo to find the location of any subscribers and

begins to publish messages as well as write them to the console. In the subscriber window,

you should also now be seeing console output from the subscriber that is reading messages

from the topic demonstrating a simple publish and subscribe application.

You can read more about configuring your application for RTPS and other more advanced

configuration options in Section 7.3.3 and Section 7.4.5.5 . To read more about configuring

and using the DCPSInfoRepo go to Section 7.3 and Chapter 9. To find more about setting

and using QoS features that modify the behavior of your application read Chapter 3.

 2.1.8 Running Our Example With RTPS
The prior OpenDDS example has demonstrated how to build and execute an OpenDDS

application using basic OpenDDS configurations and centralized discovery using the

DCPSInfoRepo service. The following details what is needed to run the same example using

RTPS for discovery and with an interoperable transport. This is important in scenarios when

your OpenDDS application needs to interoperate with a non-OpenDDS implementation of

the DDS specification or if you do not want to use centralized discovery in your deployment

of OpenDDS.

The coding and building of the Messenger example above is not changed for using RTPS, so

you will not need to modify or rebuild your publisher and subscriber services. This is a

3 4 O p e n D D S D e v e l o p e r ’ s G u i d e

smb://simple.ior/

 2.1 Using DCPS

strength of the OpenDDS architecture in that to enable the RTPS capabilities, it is an

exercise of configuration. Chapter 7 will cover more details concerning the configuration of

all the available transports including RTPS, however, for this exercise we will enable RTPS

for the Messenger example using a configuration file that the publisher and subscriber will

share.

Navigate to the directory where your publisher and subscriber have been built. Create a

new text file named rtps.ini and populate it with the following content:

[common]
DCPSGlobalTransportConfig=$file
DCPSDefaultDiscovery=DEFAULT_RTPS

[transport/the_rtps_transport]
transport_type=rtps_udp

More details of configuration files are specified in upcoming chapters, but the two lines of

interest are called out for setting the discovery method and the data transport protocol to

RTPS.

Now lets re-run our example with RTPS enabled by starting the subscriber process first and

then the publisher to begin sending data. It is best to start them in separate windows to see

the two working separately.

Start the subscriber with the -DCPSConfigFile command line parameter to point to the

newly created configuration file...

Windows:

subscriber -DCPSConfigFile rtps.ini

Unix:

./subscriber -DCPSConfigFile rtps.ini

Now start the publisher with the same parameter...

Windows:

publisher -DCPSConfigFile rtps.ini

Unix:

./publisher -DCPSConfigFile rtps.ini

Since there is no centralized discovery in the RTPS specification, there are provisions to

allow for wait times to allow discovery to occur. The specification sets the default to 30

seconds. When the two above processes are started there may be up to a 30 second delay

depending on how far apart they are started from each other. This time can be adjusted in

OpenDDS configuration files discussed later Section 7.3.3.

3 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

Because the architecture of OpenDDS allows for pluggable discovery and pluggable

transports the two configuration entries called out in the rtps.ini file above can be

changed independently with one using RTPS and the other not using RTPS (e.g. centralized

discovery using DCPSInfoRepo). Setting them both to RTPS in our example makes this

application fully interoperable with other non-OpenDDS implementations.

 2.2 Data Handling Optimizations

 2.2.1 Registering And Using Instances In The
Publisher
The previous example implicitly specifies the instance it is publishing via the sample’s data

fields. When write() is called, the data writer queries the sample’s key fields to determine

the instance. The publisher also has the option to explicitly register the instance by calling

register_instance() on the data writer:

 Messenger::Message message;
 message.subject_id = 99;
 DDS::InstanceHandle_t handle = message_writer->register_instance(message);

After we populate the Message structure we called the register_instance() function to

register the instance. The instance is identified by the subject_id value of 99 (because we

earlier specified that field as the key).

We can later use the returned instance handle when we publish a sample:

 DDS::ReturnCode_t ret = data_writer->write(message, handle);

Publishing samples using the instance handle may be slightly more efficient than forcing the

writer to query for the instance and is much more efficient when publishing the first sample

on an instance. Without explicit registration, the first write causes resource allocation by

OpenDDS for that instance.

Because resource limitations can cause instance registration to fail, many applications

consider registration as part of setting up the publisher and always do it when initializing

the data writer.

 2.2.2 Reading Multiple Samples
The DDS specification provides a number of operations for reading and writing data

samples. In the examples above we used the take_next_sample() operation, to read the

3 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 2.2 Data Handling Optimizations

next sample and “take” ownership of it from the reader. The Message Data Reader also has

the following take operations.

• take()—Take a sequence of up to max_samples values from the reader

• take_instance()—Take a sequence of values for a specified instance

• take_next_instance()—Take a sequence of samples belonging to the same instance,

without specifying the instance.

There are also “read” operations corresponding to each of these “take” operations that

obtain the same values, but leave the samples in the reader and simply mark them as read

in the SampleInfo.

Since these other operations read a sequence of values, they are more efficient when

samples are arriving quickly. Here is a sample call to take() that reads up to 5 samples at a

time.

 MessageSeq messages(5);
 DDS::SampleInfoSeq sampleInfos(5);
 DDS::ReturnCode_t status =

message_dr->take(messages,
 sampleInfos,

 5,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);

The three state parameters potentially specialize which samples are returned from the

reader. See the DDS specification for details on their usage.

 2.2.3 Zero-Copy Read
The read and take operations that return a sequence of samples provide the user with the

option of obtaining a copy of the samples (single-copy read) or a reference to the samples

(zero-copy read). The zero-copy read can have significant performance improvements over

the single-copy read for large sample types. Testing has shown that samples of 8KB or less

do not gain much by using zero-copy reads but there is little performance penalty for using

zero-copy on small samples.

The application developer can specify the use of the zero-copy read optimization by calling

take() or read() with a sample sequence constructed with a max_len of zero. The

message sequence and sample info sequence constructors both take max_len as their first

parameter and specify a default value of zero. The following example code is taken from

DevGuideExamples/DCPS/Messenger_ZeroCopy/DataReaderListenerImpl.cpp:

 Messenger::MessageSeq messages;
 DDS::SampleInfoSeq info;

3 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Getting Started

 // get references to the samples (zero-copy read of the samples)
 DDS::ReturnCode_t status = dr->take(messages,
 info,
 DDS::LENGTH_UNLIMITED,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);

After both zero-copy takes/reads and single-copy takes/reads, the sample and info

sequences’ length are set to the number of samples read. For the zero-copy reads, the

max_len is set to a value >= length.

Since the application code has asked for a zero-copy loan of the data, it must return that

loan when it is finished with the data:

 dr->return_loan(messages, info);

Calling return_loan() results in the sequences’ max_len being set to 0 and its owns

member set to false, allowing the same sequences to be used for another zero-copy read.

If the first parameter of the data sample sequence constructor and info sequence

constructor were changed to a value greater than zero, then the sample values returned

would be copies. When values are copied, the application developer has the option of calling

return_loan(), but is not required to do so.

If the max_len (the first) parameter of the sequence constructor is not specified, it defaults

to 0; hence using zero-copy reads. Because of this default, a sequence will automatically call

return_loan() on itself when it is destroyed. To conform with the DDS specification and be

portable to other implementations of DDS, applications should not rely on this automatic

return_loan() feature.

The second parameter to the sample and info sequences is the maximum slots available in

the sequence. If the read() or take() operation’s max_samples parameter is larger than

this value, then the maximum samples returned by read() or take() will be limited by this

parameter of the sequence constructor.

Although the application can change the length of a zero-copy sequence, by calling the

length(len) operation, you are advised against doing so because this call results in copying

the data and creating a single-copy sequence of samples.

3 8 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 3

Quality of Service

 3.1 Introduction
The previous examples use default QoS policies for the various entities. This chapter

discusses the QoS policies which are implemented in OpenDDS and the details of their

usage. See the DDS specification for further information about the policies discussed in this

chapter.

 3.2 QoS Policies
Each policy defines a structure to specify its data. Each entity supports a subset of the

policies and defines a QoS structure that is composed of the supported policy structures.

The set of allowable policies for a given entity is constrained by the policy structures nested

in its QoS structure. For example, the Publisher’s QoS structure is defined in the

specification’s IDL as follows:

module DDS {
 struct PublisherQos {
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 GroupDataQosPolicy group_data;
 EntityFactoryQosPolicy entity_factory;
 };
};

Setting policies is as simple as obtaining a structure with the default values already set,

3 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

modifying the individual policy structures as necessary, and then applying the QoS structure

to an entity (usually when it is created). We show examples of how to obtain the default QoS

policies for various entity types in Section 3.2.1.

Applications can change the QoS of any entity by calling the set_qos() operation on the

entity. If the QoS is changeable, existing associations are removed if they are no longer

compatible and new associations are added if they become compatible. The DCPSInfoRepo

re-evaluates the QoS compatibility and associations according to the QoS specification. If

the compatibility checking fails, the call to set_qos() will return an error. The association re-

evaluation may result in removal of existing associations or addition of new associations.

If the user attempts to change a QoS policy that is immutable (not changeable), then

set_qos() returns DDS::RETCODE_IMMUTABLE_POLICY.

A subset of the QoS policies are changeable. Some changeable QoS policies, such as

USER_DATA, TOPIC_DATA, GROUP_DATA, LIFESPAN, OWNERSHIP_STRENGTH, TIME_BASED_FILTER,

ENTITY_FACTORY, WRITER_DATA_LIFECYCLE, and READER_DATA_LIFECYCLE, do not require

compatibility and association re-evaluation. The DEADLINE and LATENCY_BUDGET QoS policies

require compatibility re-evaluation, but not for association. The PARTITION QoS policy does

not require compatibility re-evaluation, but does require association re-evaluation. The DDS

specification lists TRANSPORT_PRIORITY as changeable, but the OpenDDS implementation

does not support dynamically modifying this policy.

 3.2.1 Default QoS Policy Values
Applications obtain the default QoS policies for an entity by instantiating a QoS structure of

the appropriate type for the entity and passing it by reference to the appropriate

get_default_entity_qos() operation on the appropriate factory entity. (For example, you

would use a domain participant to obtain the default QoS for a publisher or subscriber.) The

following examples illustrate how to obtain the default policies for publisher, subscriber,

topic, domain participant, data writer, and data reader.

// Get default Publisher QoS from a DomainParticipant:
DDS::PublisherQos pub_qos;
DDS::ReturnCode_t ret;
ret = domain_participant->get_default_publisher_qos(pub_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default publisher QoS" << std::endl;
}

// Get default Subscriber QoS from a DomainParticipant:
DDS::SubscriberQos sub_qos;
ret = domain_participant->get_default_subscriber_qos(sub_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default subscriber QoS" << std::endl;
}

4 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

// Get default Topic QoS from a DomainParticipant:
DDS::TopicQos topic_qos;
ret = domain_participant->get_default_topic_qos(topic_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default topic QoS" << std::endl;
}

// Get default DomainParticipant QoS from a DomainParticipantFactory:
DDS::DomainParticipantQos dp_qos;
ret = domain_participant_factory->get_default_participant_qos(dp_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default participant QoS" << std::endl;
}

// Get default DataWriter QoS from a Publisher:
DDS::DataWriterQos dw_qos;
ret = pub->get_default_datawriter_qos(dw_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default data writer QoS" << std::endl;
}

// Get default DataReader QoS from a Subscriber:
DDS::DataReaderQos dr_qos;
ret = sub->get_default_datareader_qos(dr_qos);
if (DDS::RETCODE_OK != ret) {
 std::cerr << "Could not get default data reader QoS" << std::endl;
}

The following tables summarize the default QoS policies for each entity type in OpenDDS to

which policies can be applied.

Table 3-1 Default DomainParticipant QoS Policies

Policy Member Default Value

USER_DATA value (empty sequence)

ENTITY_FACTORY autoenable_created_entities true

Table 3-2 Default Topic QoS Policies

Policy Member Default Value
TOPIC_DATA value (empty sequence)

DURABILITY
kind
service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DURABILITY_SERVICE

service_cleanup_delay.sec
service_cleanup_delay.nanosec
history_kind
history_depth
max_samples
max_instances
max_samples_per_instance

DURATION_ZERO_SEC
DURATION_ZERO_NSEC
KEEP_LAST_HISTORY_QOS
1
LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

DEADLINE period.sec
period.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

LATENCY_BUDGET duration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

4 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

Policy Member Default Value

LIVELINESS
kind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

RELIABILITY
kind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

DESTINATION_ORDER kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITS
max_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

TRANSPORT_PRIORITY value 0

LIFESPAN duration.sec
duration.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

OWNERSHIP kind SHARED_OWNERSHIP_QOS

Table 3-3 Default Publisher QoS Policies

Policy Member Default Value

PRESENTATION
access_scope
coherent_access
ordered_access

INSTANCE_PRESENTATION_QOS
0
0

PARTITION name (empty sequence)

GROUP_DATA value (empty sequence)

ENTITY_FACTORY autoenable_created_entities true

Table 3-4 Default Subscriber QoS Policies

Policy Member Default Value

PRESENTATION
access_scope
coherent_access
ordered_access

INSTANCE_PRESENTATION_QOS
0
0

PARTITION name (empty sequence)

GROUP_DATA value (empty sequence)

ENTITY_FACTORY autoenable_created_entities true

Table 3-5 Default DataWriter QoS Policies

Policy Member Default Value

DURABILITY
kind
service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DURABILITY_SERVICE

service_cleanup_delay.sec
service_cleanup_delay.nanosec
history_kind
history_depth
max_samples
max_instances
max_samples_per_instance

DURATION_ZERO_SEC
DURATION_ZERO_NSEC
KEEP_LAST_HISTORY_QOS
1
LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

4 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

Policy Member Default Value

DEADLINE period.sec
period.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

LATENCY_BUDGET duration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

LIVELINESS
kind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

RELIABILITY
kind
max_blocking_time.sec
max_blocking_time.nanosec

RELIABLE_RELIABILITY_QOS2

0
100000000 (100 ms)

DESTINATION_ORDER kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITS
max_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

TRANSPORT_PRIORITY value 0

LIFESPAN duration.sec
duration.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

USER_DATA value (empty sequence)

OWNERSHIP kind SHARED_OWNERSHIP_QOS

OWNERSHIP_STRENGTH value 0

WRITER_DATA_LIFECYCLE autodispose_unregistered_instances 1

Table 3-6 Default DataReader QoS Policies

Policy Member Default Value

DURABILITY
kind
service_cleanup_delay.sec
service_cleanup_delay.nanosec

VOLATILE_DURABILITY_QOS
DURATION_ZERO_SEC
DURATION_ZERO_NSEC

DEADLINE period.sec
period.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

LATENCY_BUDGET duration.sec
duration.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

LIVELINESS
kind
lease_duration.sec
lease_duration.nanosec

AUTOMATIC_LIVELINESS_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

RELIABILITY
kind
max_blocking_time.sec
max_blocking_time.nanosec

BEST_EFFORT_RELIABILITY_QOS
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

DESTINATION_ORDER kind BY_RECEPTION_TIMESTAMP_
DESTINATIONORDER_QOS

HISTORY kind
depth

KEEP_LAST_HISTORY_QOS
1

RESOURCE_LIMITS
max_samples
max_instances
max_samples_per_instance

LENGTH_UNLIMITED
LENGTH_UNLIMITED
LENGTH_UNLIMITED

USER_DATA value (empty sequence)

OWNERSHIP kind SHARED_OWNERSHIP_QOS

TIME_BASED_FILTER minimum_separation.sec
minimum_separation.nanosec

DURATION_ZERO_SEC
DURATION_ZERO_NSEC

2 For OpenDDS versions, up to 2.0, the default reliability kind for data writers is best effort. For versions 2.0.1 and

later, this is changed to reliable (to conform to the DDS specification).

4 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

Policy Member Default Value

READER_DATA_LIFECYCLE

autopurge_nowriter_samples_delay.sec
autopurge_nowriter_samples_delay.nanosec
autopurge_disposed_samples_delay.sec
autopurge_disposed_samples_delay.nanosec

DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC
DURATION_INFINITE_SEC
DURATION_INFINITE_NSEC

 3.2.2 LIVELINESS
The LIVELINESS policy applies to the topic, data reader, and data writer entities via the

liveliness member of their respective QoS structures. Setting this policy on a topic means it

is in effect for all data readers and data writers on that topic. Below is the IDL related to the

liveliness QoS policy:

enum LivelinessQosPolicyKind {
 AUTOMATIC_LIVELINESS_QOS,
 MANUAL_BY_PARTICIPANT_LIVELINESS_QOS,
 MANUAL_BY_TOPIC_LIVELINESS_QOS
};

struct LivelinessQosPolicy {
 LivelinessQosPolicyKind kind;
 Duration_t lease_duration;
};

The LIVELINESS policy controls when and how the service determines whether participants

are alive, meaning they are still reachable and active. The kind member setting indicates

whether liveliness is asserted automatically by the service or manually by the specified

entity. A setting of AUTOMATIC_LIVELINESS_QOS means that the service will send a liveliness

indication if the participant has not sent any network traffic for the lease_duration. The

MANUAL_BY_PARTICIPANT_LIVELINESS_QOS or MANUAL_BY_TOPIC_LIVELINESS_QOS setting

means the specified entity (data writer for the “by topic” setting or domain participant for

the “by participant” setting) must either write a sample or manually assert its liveliness

within a specified heartbeat interval. The desired heartbeat interval is specified by the

lease_duration member. The default lease duration is a pre-defined infinite value, which

disables any liveliness testing.

To manually assert liveliness without publishing a sample, the application must call the

assert_liveliness() operation on the data writer (for the “by topic” setting) or on the

domain participant (for the “by participant” setting) within the specified heartbeat interval.

Data writers specify (offer) their own liveliness criteria and data readers specify (request)

the desired liveliness of their writers. Writers that are not heard from within the lease

duration (either by writing a sample or by asserting liveliness) cause a change in the

LIVELINESS_CHANGED_STATUS communication status and notification to the application (e.g.,

by calling the data reader listener’s on_liveliness_changed() callback operation or by

signaling any related wait sets).

4 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

This policy is considered during the establishment of associations between data writers and

data readers. The value of both sides of the association must be compatible in order for an

association to be established. Compatibility is determined by comparing the data reader’s

requested liveliness with the data writer’s offered liveliness. Both the kind of liveliness

(automatic, manual by topic, manual by participant) and the value of the lease duration are

considered in determining compatibility. The writer’s offered kind of liveliness must be

greater than or equal to the reader’s requested kind of liveliness. The liveliness kind values

are ordered as follows:

MANUAL_BY_TOPIC_LIVELINESS_QOS >
MANUAL_BY_PARTICIPANT_LIVELINESS_QOS >
AUTOMATIC_LIVELINESS_QOS

In addition, the writer’s offered lease duration must be less than or equal to the reader’s

requested lease duration. Both of these conditions must be met for the offered and

requested liveliness policy settings to be considered compatible and the association

established.

 3.2.3 RELIABILITY
The RELIABILITY policy applies to the topic, data reader, and data writer entities via the

reliability member of their respective QoS structures. Below is the IDL related to the

reliability QoS policy:

enum ReliabilityQosPolicyKind {
 BEST_EFFORT_RELIABILITY_QOS,
 RELIABLE_RELIABILITY_QOS
};

struct ReliabilityQosPolicy {
 ReliabilityQosPolicyKind kind;
 Duration_t max_blocking_time;
};

This policy controls how data readers and writers treat the data samples they process. The

“best effort” value (BEST_EFFORT_RELIABILITY_QOS) makes no promises as to the reliability

of the samples and could be expected to drop samples under some circumstances. The

“reliable” value (RELIABLE_RELIABILITY_QOS) indicates that the service should eventually

deliver all values to eligible data readers.

The max_blocking_time member of this policy is used when the history QoS policy is set to

“keep all” and the writer is unable to proceed because of resource limits. When this

situation occurs and the writer blocks for more than the specified time, then the write fails

with a timeout return code. The default for this policy for data readers and topics is “best

effort,” while the default value for data writers is “reliable.”

4 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

This policy is considered during the creation of associations between data writers and data

readers. The value of both sides of the association must be compatible in order for an

association to be created. The reliability kind of data writer must be greater than or equal to

the value of data reader.

 3.2.4 HISTORY
The HISTORY policy determines how samples are held in the data writer and data reader for

a particular instance. For data writers these values are held until the publisher retrieves

them and successfully sends them to all connected subscribers. For data readers these

values are held until “taken” by the application. This policy applies to the topic, data reader,

and data writer entities via the history member of their respective QoS structures. Below is

the IDL related to the history QoS policy:

enum HistoryQosPolicyKind {
 KEEP_LAST_HISTORY_QOS,
 KEEP_ALL_HISTORY_QOS
};

struct HistoryQosPolicy {
 HistoryQosPolicyKind kind;
 long depth;
};

The “keep all” value (KEEP_ALL_HISTORY_QOS) specifies that all possible samples for that

instance should be kept. When “keep all” is specified and the number of unread samples is

equal to the “resource limits” field of max_samples_per_instance then any incoming

samples are rejected.

The “keep last” value (KEEP_LAST_HISTORY_QOS) specifies that only the last depth values

should be kept. When a data writer contains depth samples of a given instance, a write of

new samples for that instance are queued for delivery and the oldest unsent samples are

discarded. When a data reader contains depth samples of a given instance, any incoming

samples for that instance are kept and the oldest samples are discarded.

This policy defaults to a “keep last” with a depth of one.

 3.2.5 DURABILITY
The DURABILITY policy controls whether data writers should maintain samples after they

have been sent to known subscribers. This policy applies to the topic, data reader, and data

writer entities via the durability member of their respective QoS structures. Below is the

IDL related to the durability QoS policy:

enum DurabilityQosPolicyKind {
 VOLATILE_DURABILITY_QOS, // Least Durability

4 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

 TRANSIENT_LOCAL_DURABILITY_QOS,
 TRANSIENT_DURABILITY_QOS,
 PERSISTENT_DURABILITY_QOS // Greatest Durability
};

struct DurabilityQosPolicy {
 DurabilityQosPolicyKind kind;
};

By default the kind is VOLATILE_DURABILITY_QOS.

A durability kind of VOLATILE_DURABILITY_QOS means samples are discarded after being

sent to all known subscribers. As a side effect, subscribers cannot recover samples sent

before they connect.

A durability kind of TRANSIENT_LOCAL_DURABILITY_QOS means that data readers that are

associated/connected with a data writer will be sent all of the samples in the data writer’s

history.

A durability kind of TRANSIENT_DURABILITY_QOS means that samples outlive a data writer

and last as long as the process is alive. The samples are kept in memory, but are not

persisted to permanent storage. A data reader subscribed to the same topic and partition

within the same domain will be sent all of the cached samples that belong to the same

topic/partition.

A durability kind of PERSISTENT_DURABILITY_QOS provides basically the same functionality

as transient durability except the cached samples are persisted and will survive process

destruction.

When transient or persistent durability is specified, the DURABILITY_SERVICE QoS policy

specifies additional tuning parameters for the durability cache.

The durability policy is considered during the creation of associations between data writers

and data readers. The value of both sides of the association must be compatible in order for

an association to be created. The durability kind value of the data writer must be greater

than or equal to the corresponding value of the data reader. The durability kind values are

ordered as follows:

PERSISTENT_DURABILITY_QOS >
TRANSIENT_DURABILITY_QOS >
TRANSIENT_LOCAL_DURABILITY_QOS >
VOLATILE_DURABILITY_QOS

 3.2.6 DURABILITY_SERVICE
The DURABILITY_SERVICE policy controls deletion of samples in TRANSIENT or PERSISTENT

durability cache. This policy applies to the topic and data writer entities via the

durability_service member of their respective QoS structures and provides a way to specify

4 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

HISTORY and RESOURCE_LIMITS for the sample cache. Below is the IDL related to the

durability service QoS policy:

struct DurabilityServiceQosPolicy {
 Duration_t service_cleanup_delay;
 HistoryQosPolicyKind history_kind;
 long history_depth;
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
};

The history and resource limits members are analogous to, although independent of, those

found in the HISTORY and RESOURCE_LIMITS policies. The service_cleanup_delay can be

set to a desired value. By default, it is set to zero, which means never clean up cached

samples.

 3.2.7 RESOURCE_LIMITS
The RESOURCE_LIMITS policy determines the amount of resources the service can consume

in order to meet the requested QoS. This policy applies to the topic, data reader, and data

writer entities via the resource_limits member of their respective QoS structures. Below is

the IDL related to the resource limits QoS policy.

struct ResourceLimitsQosPolicy {
 long max_samples;
 long max_instances;
 long max_samples_per_instance;
};

The max_samples member specifies the maximum number of samples a single data writer or

data reader can manage across all of its instances. The max_instances member specifies

the maximum number of instances that a data writer or data reader can manage. The

max_samples_per_instance member specifies the maximum number of samples that can be

managed for an individual instance in a single data writer or data reader. The values of all

these members default to unlimited (DDS::LENGTH_UNLIMITED).

Resources are used by the data writer to queue samples written to the data writer but not

yet sent to all data readers because of backpressure from the transport. Resources are used

by the data reader to queue samples that have been received, but not yet read/taken from

the data reader.

 3.2.8 PARTITION
The PARTITION QoS policy allows the creation of logical partitions within a domain. It only

allows data readers and data writers to be associated if they have matched partition strings.

4 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

This policy applies to the publisher and subscriber entities via the partition member of their

respective QoS structures. Below is the IDL related to the partition QoS policy.

struct PartitionQosPolicy {
 StringSeq name;
};

The name member defaults to an empty sequence of strings. The default partition name is

an empty string and causes the entity to participate in the default partition. The partition

names may contain wildcard characters as defined by the POSIX fnmatch function (POSIX

1003.2-1992 section B.6).

The establishment of data reader and data writer associations depends on matching

partition strings on the publication and subscription ends. Failure to match partitions is not

considered a failure and does not trigger any callbacks or set any status values.

The value of this policy may be changed at any time. Changes to this policy may cause

associations to be removed or added.

 3.2.9 DEADLINE
The DEADLINE QoS policy allows the application to detect when data is not written or read

within a specified amount of time. This policy applies to the topic, data writer, and data

reader entities via the deadline member of their respective QoS structures. Below is the IDL

related to the deadline QoS policy.

struct DeadlineQosPolicy {
 Duration_t period;
};

The default value of the period member is infinite, which requires no behavior. When this

policy is set to a finite value, then the data writer monitors the changes to data made by the

application and indicates failure to honor the policy by setting the corresponding status

condition and triggering the on_offered_deadline_missed() listener callback. A data

reader that detects that the data has not changed before the period has expired sets the

corresponding status condition and triggers the on_requested_deadline_missed() listener

callback.

This policy is considered during the creation of associations between data writers and data

readers. The value of both sides of the association must be compatible in order for an

association to be created. The deadline period of the data reader must be greater than or

equal to the corresponding value of data writer.

The value of this policy may change after the associated entity is enabled. In the case where

the policy of a data reader or data writer is made, the change is successfully applied only if

4 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

the change remains consistent with the remote end of all associations in which the reader or

writer is participating. If the policy of a topic is changed, it will affect only data readers and

writers that are created after the change has been made. Any existing readers or writers,

and any existing associations between them, will not be affected by the topic policy value

change.

 3.2.10 LIFESPAN
The LIFESPAN QoS policy allows the application to specify when a sample expires. Expired

samples will not be delivered to subscribers. This policy applies to the topic and data writer

entities via the lifespan member of their respective QoS structures. Below is the IDL related

to the lifespan QoS policy.

struct LifespanQosPolicy {
 Duration_t duration;
}

The default value of the duration member is infinite, which means samples never expire.

OpenDDS currently supports expired sample detection on the publisher side when using a

DURABILITY kind other than VOLATILE. The current OpenDDS implementation may not

remove samples from the data writer and data reader caches when they expire after being

placed in the cache.

The value of this policy may be changed at any time. Changes to this policy affect only data

written after the change.

 3.2.11 USER_DATA
The USER_DATA policy applies to the domain participant, data reader, and data writer

entities via the user_data member of their respective QoS structures. Below is the IDL

related to the user data QoS policy:

struct UserDataQosPolicy {
 sequence<octet> value;
};

By default, the value member is not set. It can be set to any sequence of octets which can

be used to attach information to the created entity. The value of the USER_DATA policy is

available in respective built-in topic data. The remote application can obtain the information

via the built-in topic and use it for its own purposes. For example, the application could

attach security credentials via the USER_DATA policy that can be used by the remote

application to authenticate the source.

5 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

 3.2.12 TOPIC_DATA
The TOPIC_DATA policy applies to topic entities via the topic_data member of TopicQoS

structures. Below is the IDL related to the topic data QoS policy:

struct TopicDataQosPolicy {
 sequence<octet> value;
};

By default, the value is not set. It can be set to attach additional information to the created

topic. The value of the TOPIC_DATA policy is available in data writer, data reader, and topic

built-in topic data. The remote application can obtain the information via the built-in topic

and use it in an application-defined way.

 3.2.13 GROUP_DATA
The GROUP_DATA policy applies to the publisher and subscriber entities via the group_data

member of their respective QoS structures. Below is the IDL related to the group data QoS

policy:

struct GroupDataQosPolicy {
 sequence<octet> value;
};

By default, the value member is not set. It can be set to attach additional information to the

created entities. The value of the GROUP_DATA policy is propagated via built-in topics. The

data writer built-in topic data contains the GROUP_DATA from the publisher and the data

reader built-in topic data contains the GROUP_DATA from the subscriber. The GROUP_DATA

policy could be used to implement matching mechanisms similar to those of the PARTITION

policy described in 1.1.6 except the decision could be made based on an application-defined

policy.

 3.2.14 TRANSPORT_PRIORITY
The TRANSPORT_PRIORITY policy applies to topic and data writer entities via the

transport_priority member of their respective QoS policy structures. Below is the IDL

related to the TransportPriority QoS policy:

struct TransportPriorityQosPolicy {
 long value;
};

The default value member of transport_priority is zero. This policy is considered a hint to

the transport layer to indicate at what priority to send messages. Higher values indicate

higher priority. OpenDDS maps the priority value directly onto thread and DiffServ

5 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

codepoint values. A default priority of zero will not modify either threads or codepoints in

messages.

OpenDDS will attempt to set the thread priority of the sending transport as well as any

associated receiving transport. Transport priority values are mapped from zero (default)

through the maximum thread priority linearly without scaling. If the lowest thread priority

is different from zero, then it is mapped to the transport priority value of zero. Where

priority values on a system are inverted (higher numeric values are lower priority),

OpenDDS maps these to an increasing priority value starting at zero. Priority values lower

than the minimum (lowest) thread priority on a system are mapped to that lowest priority.

Priority values greater than the maximum (highest) thread priority on a system are mapped

to that highest priority. On most systems, thread priorities can only be set when the process

scheduler has been set to allow these operations. Setting the process scheduler is generally

a privileged operation and will require system privileges to perform. On POSIX based

systems, the system calls of sched_get_priority_min() and sched_get_priority_max()

are used to determine the system range of thread priorities.

OpenDDS will attempt to set the DiffServ codepoint on the socket used to send data for the

data writer if it is supported by the transport implementation. If the network hardware

honors the codepoint values, higher codepoint values will result in better (faster) transport

for higher priority samples. The default value of zero will be mapped to the (default)

codepoint of zero. Priority values from 1 through 63 are then mapped to the corresponding

codepoint values, and higher priority values are mapped to the highest codepoint value (63).

OpenDDS does not currently support modifications of the transport_priority policy values

after creation of the data writer. This can be worked around by creating new data writers as

different priority values are required.

 3.2.15 LATENCY_BUDGET
The LATENCY_BUDGET policy applies to topic, data reader, and data writer entities via the

latency_budget member of their respective QoS policy structures. Below is the IDL related

to the LatencyBudget QoS policy:

struct LatencyBudgetQosPolicy {
 Duration_t duration;
};

The default value of duration is zero indicating that the delay should be minimized. This

policy is considered a hint to the transport layer to indicate the urgency of samples being

sent. OpenDDS uses the value to bound a delay interval for reporting unacceptable delay in

transporting samples from publication to subscription. This policy is used for monitoring

5 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

purposes only at this time. Use the TRANSPORT_PRIORITY policy to modify the sending of

samples. The data writer policy value is used only for compatibility comparisons and if left

at the default value of zero will result in all requested duration values from data readers

being matched.

An additional listener extension has been added to allow reporting delays in excess of the

policy duration setting. The OpenDDS::DCPS::DataReaderListener interface has an

additional operation for notification that samples were received with a measured transport

delay greater than the latency_budget policy duration. The IDL for this method is:

 struct BudgetExceededStatus {
 long total_count;
 long total_count_change;
 DDS::InstanceHandle_t last_instance_handle;
 };

 void on_budget_exceeded(
 in DDS::DataReader reader,
 in BudgetExceededStatus status);

To use the extended listener callback you will need to derive the listener implementation

from the extended interface, as shown in the following code fragment:

 class DataReaderListenerImpl
 : public virtual
 OpenDDS::DCPS::LocalObject<OpenDDS::DCPS::DataReaderListener>

Then you must provide a non-null implementation for the on_budget_exceeded() operation.

Note that you will need to provide empty implementations for the following extended

operations as well:

 on_subscription_disconnected()
 on_subscription_reconnected()
 on_subscription_lost()
 on_connection_deleted()

OpenDDS also makes the summary latency statistics available via an extended interface of

the data reader. This extended interface is located in the OpenDDS::DCPS module and the

IDL is defined as:

 struct LatencyStatistics {
 GUID_t publication;
 unsigned long n;
 double maximum;
 double minimum;
 double mean;
 double variance;
 };

 typedef sequence<LatencyStatistics> LatencyStatisticsSeq;

 local interface DataReaderEx : DDS::DataReader {

5 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

 /// Obtain a sequence of statistics summaries.
 void get_latency_stats(inout LatencyStatisticsSeq stats);

 /// Clear any intermediate statistical values.
 void reset_latency_stats();

 /// Statistics gathering enable state.
 attribute boolean statistics_enabled;
 };

To gather this statistical summary data you will need to use the extended interface. You can

do so simply by dynamically casting the OpenDDS data reader pointer and calling the

operations directly. In the following example, we assume that reader is initialized correctly

by calling DDS::Subscriber::create_datareader():

 DDS::DataReader_var reader;
 // ...

 // To start collecting new data.
 dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
 reset_latency_stats();
 dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
 statistics_enabled(true);

 // ...

 // To collect data.
 OpenDDS::DCPS::LatencyStatisticsSeq stats;
 dynamic_cast<OpenDDS::DCPS::DataReaderImpl*>(reader.in())->
 get_latency_stats(stats);
 for (unsigned long i = 0; i < stats.length(); ++i)
 {
 std::cout << "stats[" << i << "]:" << std::endl;
 std::cout << " n = " << stats[i].n << std::endl;
 std::cout << " max = " << stats[i].maximum << std::endl;
 std::cout << " min = " << stats[i].minimum << std::endl;
 std::cout << " mean = " << stats[i].mean << std::endl;
 std::cout << " variance = " << stats[i].variance << std::endl;
 }

 3.2.16 ENTITY_FACTORY
The ENTITY_FACTORY policy controls whether entities are automatically enabled when they

are created. Below is the IDL related to the Entity Factory QoS policy:

struct EntityFactoryQosPolicy {
 boolean autoenable_created_entities;
};

This policy can be applied to entities that serve as factories for other entities and controls

whether or not entities created by those factories are automatically enabled upon creation.

This policy can be applied to the domain participant factory (as a factory for domain

participants), domain participant (as a factory for publishers, subscribers, and topics),

publisher (as a factory for data writers), or subscriber (as a factory for data readers). The

5 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

default value for the autoenable_created_entities member is true, indicating that

entities are automatically enabled when they are created. Applications that wish to explicitly

enable entities some time after they are created should set the value of the

autoenable_created_entities member of this policy to false and apply the policy to the

appropriate factory entities. The application must then manually enable the entity by calling

the entity’s enable() operation.

The value of this policy may be changed at any time. Changes to this policy affect only

entities created after the change.

 3.2.17 PRESENTATION
The PRESENTATION QoS policy controls how changes to instances by publishers are

presented to data readers. It affects the relative ordering of these changes and the scope of

this ordering. Additionally, this policy introduces the concept of coherent change sets. Here

is the IDL for the Presentation QoS:

enum PresentationQosPolicyAccessScopeKind {
 INSTANCE_PRESENTATION_QOS,
 TOPIC_PRESENTATION_QOS,
 GROUP_PRESENTATION_QOS
};

struct PresentationQosPolicy {
 PresentationQosPolicyAccessScopeKind access_scope;
 boolean coherent_access;
 boolean ordered_access;
};

The scope of these changes (access_scope) specifies the level in which an application may

be made aware:

– INSTANCE_PRESENTATION_QOS (the default) indicates that changes occur to instances

independently. Instance access essentially acts as a no-op with respect to

coherent_access and ordered_access. Setting either of these values to true has no

observable affect within the subscribing application.

– TOPIC_PRESENTATION_QOS indicates that accepted changes are limited to all instances

within the same data reader or data writer.

– GROUP_PRESENTATION_QOS indicates that accepted changes are limited to all instances

within the same publisher or subscriber.

Coherent changes (coherent_access) allow one or more changes to an instance be made

available to an associated data reader as a single change. If a data reader does not receive

the entire set of coherent changes made by a publisher, then none of the changes are made

5 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

available. The semantics of coherent changes are similar in nature to those found in

transactions provided by many relational databases. By default, coherent_access is false.

Changes may also be made available to associated data readers in the order sent by the

publisher (ordered_access). This is similar in nature to the DESTINATION_ORDER QoS policy,

however ordered_access permits data to be ordered independently of instance ordering. By

default, ordered_access is false.

This policy controls the ordering and scope of samples made available to the subscriber,

but the subscriber application must use the proper logic in reading samples to guarantee

the requested behavior. For more details, see Section 2.2.2.5.1.9 of the Version 1.4 DDS

Specification.

 3.2.18 DESTINATION_ORDER
The DESTINATION_ORDER QoS policy controls the order in which samples within a given

instance are made available to a data reader. If a history depth of one (the default) is

specified, the instance will reflect the most recent value written by all data writers to that

instance. Here is the IDL for the Destination Order Qos:

enum DestinationOrderQosPolicyKind {
 BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS,
 BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS
};

struct DestinationOrderQosPolicy {
 DestinationOrderQosPolicyKind kind;
};

The BY_RECEPTION_TIMESTAMP_DESTINATIONORDER_QOS value (the default) indicates that

samples within an instance are ordered in the order in which they were received by the data

reader. Note that samples are not necessarily received in the order sent by the same data

writer. To enforce this type of ordering, the BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS

value should be used.

The BY_SOURCE_TIMESTAMP_DESTINATIONORDER_QOS value indicates that samples within an

instance are ordered based on a timestamp provided by the data writer. It should be noted

that if multiple data writers write to the same instance, care should be taken to ensure that

clocks are synchronized to prevent incorrect ordering on the data reader.

 3.2.19 WRITER_DATA_LIFECYCLE
The WRITER_DATA_LIFECYCLE QoS policy controls the lifecycle of data instances managed by

a data writer. Here is the IDL for the Writer Data Lifecycle QoS policy:

5 6 O p e n D D S D e v e l o p e r ’ s G u i d e

Note Note

 3.2 QoS Policies

struct WriterDataLifecycleQosPolicy {
 boolean autodispose_unregistered_instances;
};

When autodispose_unregistered_instances is set to true (the default), a data writer

disposes an instance when it is unregistered. In some cases, it may be desirable to prevent

an instance from being disposed when an instance is unregistered. This policy could, for

example, allow an EXCLUSIVE data writer to gracefully defer to the next data writer without

affecting the instance state. Deleting a data writer implicitly unregisters all of its instances

prior to deletion.

 3.2.20 READER_DATA_LIFECYCLE
The READER_DATA_LIFECYCLE QoS policy controls the lifecycle of data instances managed by

a data reader. Here is the IDL for the Reader Data Lifecycle QoS policy:

struct ReaderDataLifecycleQosPolicy {
 Duration_t autopurge_nowriter_samples_delay;
 Duration_t autopurge_disposed_samples_delay;
};

Normally, a data reader maintains data for all instances until there are no more associated

data writers for the instance, the instance has been disposed, or the data has been taken by

the user.

In some cases, it may be desirable to constrain the reclamation of these resources. This

policy could, for example, permit a late-joining data writer to prolong the lifetime of an

instance in fail-over situations.

The autopurge_nowriter_samples_delay controls how long the data reader waits before

reclaiming resources once an instance transitions to the NOT_ALIVE_NO_WRITERS state. By

default, autopurge_nowriter_samples_delay is infinite.

The autopurge_disposed_samples_delay controls how long the data reader waits before

reclaiming resources once an instance transitions to the NOT_ALIVE_DISPOSED state. By

default, autopurge_disposed_samples_delay is infinite.

 3.2.21 TIME_BASED_FILTER
The TIME_BASED_FILTER QoS policy controls how often a data reader may be interested in

changes in values to a data instance. Here is the IDL for the Time Based Filter QoS:

struct TimeBasedFilterQosPolicy {
 Duration_t minimum_separation;
};

5 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Quality of Service

An interval (minimum_separation) may be specified on the data reader. This interval defines

a minimum delay between instance value changes; this permits the data reader to throttle

changes without affecting the state of the associated data writer. By default,

minimum_separation is zero, which indicates that no data is filtered. This QoS policy does

not conserve bandwidth as instance value changes are still sent to the subscriber process. It

only affects which samples are made available via the data reader.

 3.2.22 OWNERSHIP
The OWNERSHIP policy controls whether more than one Data Writer is able to write samples

for the same data-object instance. Ownership can be EXCLUSIVE or SHARED. Below is the IDL

related to the Ownership QoS policy:

enum OwnershipQosPolicyKind {
 SHARED_OWNERSHIP_QOS,
 EXCLUSIVE_OWNERSHIP_QOS
};

struct OwnershipQosPolicy {
 OwnershipQosPolicyKind kind;
};

If the kind member is set to SHARED_OWNERSHIP_QOS, more than one Data Writer is allowed

to update the same data-object instance. If the kind member is set to

EXCLUSIVE_OWNERSHIP_QOS, only one Data Writer is allowed to update a given data-object

instance (i.e., the Data Writer is considered to be the owner of the instance) and associated

Data Readers will only see samples written by that Data Writer. The owner of the instance is

determined by value of the OWNERSHIP_STRENGTH policy; the data writer with the highest

value of strength is considered the owner of the data-object instance. Other factors may also

influence ownership, such as whether the data writer with the highest strength is “alive” (as

defined by the LIVELINESS policy) and has not violated its offered publication deadline

constraints (as defined by the DEADLINE policy).

 3.2.23 OWNERSHIP_STRENGTH
The OWNERSHIP_STRENGTH policy is used in conjunction with the OWNERSHIP policy, when the

OWNERSHIP kind is set to EXCLUSIVE. Below is the IDL related to the Ownership Strength

QoS policy:

struct OwnershipStrengthQosPolicy {
 long value;
};

5 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 3.2 QoS Policies

The value member is used to determine which Data Writer is the owner of the data-object

instance. The default value is zero.

 3.3 Policy Example
The following sample code illustrates some policies being set and applied for a publisher.

 DDS::DataWriterQos dw_qos;
 pub->get_default_datawriter_qos (dw_qos);

 dw_qos.history.kind = DDS::KEEP_ALL_HISTORY_QOS;

 dw_qos.reliability.kind = DDS::RELIABLE_RELIABILITY_QOS;
 dw_qos.reliability.max_blocking_time.sec = 10;
 dw_qos.reliability.max_blocking_time.nanosec = 0;

 dw_qos.resource_limits.max_samples_per_instance = 100;

 DDS::DataWriter_var dw =
 pub->create_datawriter(topic,
 dw_qos,
 0, // No listener
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);

This code creates a publisher with the following qualities:

• HISTORY set to Keep All

• RELIABILITY set to Reliable with a maximum blocking time of 10 seconds

• The maximum samples per instance resource limit set to 100

This means that when 100 samples are waiting to be delivered, the writer can block up to

10 seconds before returning an error code. These same QoS settings on the Data Reader

side would mean that up to 100 unread samples are queued by the framework before any

are rejected. Rejected samples are dropped and the SampleRejectedStatus is updated.

5 9 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 4

Conditions and Listeners

 4.1 Introduction
The DDS specification defines two separate mechanisms for notifying applications of DCPS

communication status changes. Most of the status types define a structure that contains

information related to the change of status and can be detected by the application using

conditions or listeners. The different status types are described in 4.2 .

Each entity type (domain participant, topic, publisher, subscriber, data reader, and data

writer) defines its own corresponding listener interface. Applications can implement this

interface and then attach their listener implementation to the entity. Each listener interface

contains an operation for each status that can be reported for that entity. The listener is

asynchronously called back with the appropriate operation whenever a qualifying status

change occurs. Details of the different listener types are discussed in 4.3 .

Conditions are used in conjunction with Wait Sets to let applications synchronously wait on

events. The basic usage pattern for conditions involves creating the condition objects,

attaching them to a wait set, and then waiting on the wait set until one of the conditions is

triggered. The result of wait tells the application which conditions were triggered, allowing

the application to take the appropriate actions to get the corresponding status information.

Conditions are described in greater detail in 4.4.

6 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Conditions and Listeners

 4.2 Communication Status Types
Each status type is associated with a particular entity type. This section is organized by the

entity types, with the corresponding statuses described in subsections under the associated

entity type.

Most of the statuses below are plain communication statuses. The exceptions are

DATA_ON_READERS and DATA_AVAILABLE which are read statuses. Plain communication

statuses define an IDL data structure. Their corresponding section below describes this

structure and its fields. The read statuses are simple notifications to the application which

then reads or takes the samples as desired.

Incremental values in the status data structure report a change since the last time the

status was accessed. A status is considered accessed when a listener is called for that status

or the status is read from its entity.

Fields in the status data structure with a type of InstanceHandle_t identify an entity (topic,

data reader, data writer, etc.) by the instance handle used for that entity in the Built-In-

Topics.

 4.2.1 Topic Status Types

 4.2.1.1 Inconsistent Topic Status
The INCONSISTENT_TOPIC status indicates that a topic was attempted to be registered that

already exists with different characteristics. Typically, the existing topic may have a

different type associated with it. The IDL associated with the Inconsistent Topic Status is

listed below:

struct InconsistentTopicStatus {
 long total_count;
 long total_count_change;
};

The total_count value is the cumulative count of topics that have been reported as

inconsistent. The total_count_change value is the incremental count of inconsistent topics

since the last time this status was accessed.

6 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 4.2 Communication Status Types

 4.2.2 Subscriber Status Types

 4.2.2.1 Data On Readers Status
The DATA_ON_READERS status indicates that new data is available on some of the data

readers associated with the subscriber. This status is considered a read status and does not

define an IDL structure. Applications receiving this status can call get_datareaders() on

the subscriber to get the set of data readers with data available.

 4.2.3 Data Reader Status Types

 4.2.3.1 Sample Rejected Status
The SAMPLE_REJECTED status indicates that a sample received by the data reader has been

rejected. The IDL associated with the Sample Rejected Status is listed below:

enum SampleRejectedStatusKind {
 NOT_REJECTED,
 REJECTED_BY_INSTANCES_LIMIT,
 REJECTED_BY_SAMPLES_LIMIT,
 REJECTED_BY_SAMPLES_PER_INSTANCE_LIMIT
};

struct SampleRejectedStatus {
 long total_count;
 long total_count_change;
 SampleRejectedStatusKind last_reason;
 InstanceHandle_t last_instance_handle;
};

The total_count value is the cumulative count of samples that have been reported as

rejected. The total_count_change value is the incremental count of rejected samples since

the last time this status was accessed. The last_reason value is the reason the most

recently rejected sample was rejected. The last_instance_handle value indicates the

instance of the last rejected sample.

 4.2.3.2 Liveliness Changed Status
The LIVELINESS_CHANGED status indicates that there have been liveliness changes for one or

more data writers that are publishing instances for this data reader. The IDL associated

with the Liveliness Changed Status is listed below:

struct LivelinessChangedStatus {
 long alive_count;
 long not_alive_count;
 long alive_count_change;
 long not_alive_count_change;

6 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Conditions and Listeners

 InstanceHandle_t last_publication_handle;
};

The alive_count value is the total number of data writers currently active on the topic this

data reader is reading. The not_alive_count value is the total number of data writers

writing to the data reader’s topic that are no longer asserting their liveliness. The

alive_count_change value is the change in the alive count since the last time the status

was accessed. The not_alive_count_change value is the change in the not alive count since

the last time the status was accessed. The last_publication_handle is the handle of the

last data writer whose liveliness has changed.

 4.2.3.3 Requested Deadline Missed Status
The REQUESTED_DEADLINE_MISSED status indicates that the deadline requested via the

Deadline QoS policy was not respected for a specific instance. The IDL associated with the

Requested Deadline Missed Status is listed below:

struct RequestedDeadlineMissedStatus {
 long total_count;
 long total_count_change;
 InstanceHandle_t last_instance_handle;
};

The total_count value is the cumulative count of missed requested deadlines that have

been reported. The total_count_change value is the incremental count of missed requested

deadlines since the last time this status was accessed. The last_instance_handle value

indicates the instance of the last missed deadline.

 4.2.3.4 Requested Incompatible QoS Status
The REQUESTED_INCOMPATIBLE_QOS status indicates that one or more QoS policy values that

were requested were incompatible with what was offered. The IDL associated with the

Requested Incompatible QoS Status is listed below:

struct QosPolicyCount {
 QosPolicyId_t policy_id;
 long count;
};

typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct RequestedIncompatibleQosStatus {
 long total_count;
 long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies;
};

6 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 4.2 Communication Status Types

The total_count value is the cumulative count of times data writers with incompatible QoS

have been reported. The total_count_change value is the incremental count of

incompatible data writers since the last time this status was accessed. The last_policy_id

value identifies one of the QoS policies that was incompatible in the last incompatibility

detected. The policies value is a sequence of values that indicates the total number of

incompatibilities that have been detected for each QoS policy.

 4.2.3.5 Data Available Status
The DATA_AVAILABLE status indicates that samples are available on the data writer. This

status is considered a read status and does not define an IDL structure. Applications

receiving this status can use the various take and read operations on the data reader to

retrieve the data.

 4.2.3.6 Sample Lost Status
The SAMPLE_LOST status indicates that a sample has been lost and never received by the

data reader. The IDL associated with the Sample Lost Status is listed below:

struct SampleLostStatus {
 long total_count;
 long total_count_change;
};

The total_count value is the cumulative count of samples reported as lost. The

total_count_change value is the incremental count of lost samples since the last time this

status was accessed.

 4.2.3.7 Subscription Matched Status
The SUBSCRIPTION_MATCHED status indicates that either a compatible data writer has been

matched or a previously matched data writer has ceased to be matched. The IDL associated

with the Subscription Matched Status is listed below:

struct SubscriptionMatchedStatus {
 long total_count;
 long total_count_change;
 long current_count;
 long current_count_change;
 InstanceHandle_t last_publication_handle;
};

The total_count value is the cumulative count of data writers that have compatibly

matched this data reader. The total_count_change value is the incremental change in the

total count since the last time this status was accessed. The current_count value is the

6 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Conditions and Listeners

current number of data writers matched to this data reader. The current_count_change

value is the change in the current count since the last time this status was accessed. The

last_publication_handle value is a handle for the last data writer matched.

 4.2.4 Data Writer Status Types

 4.2.4.1 Liveliness Lost Status
The LIVELINESS_LOST status indicates that the liveliness that the data writer committed

through its Liveliness QoS has not been respected. This means that any connected data

readers will consider this data writer no longer active.The IDL associated with the

Liveliness Lost Status is listed below:

struct LivelinessLostStatus {
 long total_count;
 long total_count_change;
};

The total_count value is the cumulative count of times that an alive data writer has

become not alive. The total_count_change value is the incremental change in the total

count since the last time this status was accessed.

 4.2.4.2 Offered Deadline Missed Status
The OFFERED_DEADLINE_MISSED status indicates that the deadline offered by the data writer

has been missed for one or more instances. The IDL associated with the Offered Deadline

Missed Status is listed below:

struct OfferedDeadlineMissedStatus {
 long total_count;
 long total_count_change;
 InstanceHandle_t last_instance_handle;
};

The total_count value is the cumulative count of times that deadlines have been missed for

an instance. The total_count_change value is the incremental change in the total count

since the last time this status was accessed. The last_instance_handle value indicates the

last instance that has missed a deadline.

 4.2.4.3 Offered Incompatible QoS Status
The OFFERED_INCOMPATIBLE_QOS status indicates that an offered QoS was incompatible with

the requested QoS of a data reader. The IDL associated with the Offered Incompatible QoS

Status is listed below:

6 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 4.2 Communication Status Types

struct QosPolicyCount {
 QosPolicyId_t policy_id;
 long count;
};
typedef sequence<QosPolicyCount> QosPolicyCountSeq;

struct OfferedIncompatibleQosStatus {
 long total_count;
 long total_count_change;
 QosPolicyId_t last_policy_id;
 QosPolicyCountSeq policies;
};

The total_count value is the cumulative count of times that data readers with incompatible

QoS have been found. The total_count_change value is the incremental change in the total

count since the last time this status was accessed. The last_policy_id value identifies one

of the QoS policies that was incompatible in the last incompatibility detected. The policies

value is a sequence of values that indicates the total number of incompatibilities that have

been detected for each QoS policy.

 4.2.4.4 Publication Matched Status
The PUBLICATION_MATCHED status indicates that either a compatible data reader has been

matched or a previously matched data reader has ceased to be matched. The IDL associated

with the Publication Matched Status is listed below:

struct PublicationMatchedStatus {
 long total_count;
 long total_count_change;
 long current_count;
 long current_count_change;
 InstanceHandle_t last_subscription_handle;
};

The total_count value is the cumulative count of data readers that have compatibly

matched this data writer. The total_count_change value is the incremental change in the

total count since the last time this status was accessed. The current_count value is the

current number of data readers matched to this data writer. The current_count_change

value is the change in the current count since the last time this status was accessed. The

last_subscription_handle value is a handle for the last data reader matched.

 4.3 Listeners
Each entity defines its own listener interface based on the statuses it can report. Any

entity’s listener interface also inherits from the listeners of its owned entities, allowing it to

handle statuses for owned entities as well. For example, a subscriber listener directly

6 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Conditions and Listeners

defines an operation to handle Data On Readers statuses and inherits from the data reader

listener as well.

Each status operation takes the general form of on_<status_name>(<entity>,

<status_struct>), where <status_name> is the name of the status being reported,

<entity> is a reference to the entity the status is reported for, and <status_struct> is the

structure with details of the status. Read statuses omit the second parameter. For example,

here is the operation for the Sample Lost status:

 void on_sample_lost(in DataReader the_reader, in SampleLostStatus status);

Listeners can either be passed to the factory function used to create their entity or explicitly

set by calling set_listener() on the entity after it is created. Both of these functions also

take a status mask as a parameter. The mask indicates which statuses are enabled in that

listener. Mask bit values for each status are defined in DdsDcpsInfrastructure.idl:

module DDS {
 typedef unsigned long StatusKind;
 typedef unsigned long StatusMask; // bit-mask StatusKind

 const StatusKind INCONSISTENT_TOPIC_STATUS = 0x0001 << 0;
 const StatusKind OFFERED_DEADLINE_MISSED_STATUS = 0x0001 << 1;
 const StatusKind REQUESTED_DEADLINE_MISSED_STATUS = 0x0001 << 2;
 const StatusKind OFFERED_INCOMPATIBLE_QOS_STATUS = 0x0001 << 5;
 const StatusKind REQUESTED_INCOMPATIBLE_QOS_STATUS= 0x0001 << 6;
 const StatusKind SAMPLE_LOST_STATUS = 0x0001 << 7;
 const StatusKind SAMPLE_REJECTED_STATUS = 0x0001 << 8;
 const StatusKind DATA_ON_READERS_STATUS = 0x0001 << 9;
 const StatusKind DATA_AVAILABLE_STATUS = 0x0001 << 10;
 const StatusKind LIVELINESS_LOST_STATUS = 0x0001 << 11;
 const StatusKind LIVELINESS_CHANGED_STATUS = 0x0001 << 12;
 const StatusKind PUBLICATION_MATCHED_STATUS = 0x0001 << 13;
 const StatusKind SUBSCRIPTION_MATCHED_STATUS = 0x0001 << 14;
};

Simply do a bit-wise “or” of the desired status bits to construct a mask for your listener.

Here is an example of attaching a listener to a data reader (for just Data Available statuses):

 DDS::DataReaderListener_var listener (new DataReaderListenerImpl);
 // Create the Datareader
 DDS::DataReader_var dr = sub->create_datareader(
 topic,
 DATAREADER_QOS_DEFAULT,
 listener,
 DDS::DATA_AVAILABLE_STATUS);

Here is an example showing how to change the listener using set_listener():

 dr->set_listener(listener,
 DDS::DATA_AVAILABLE_STATUS |

 DDS::LIVELINESS_CHANGED_STATUS);

6 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 4.3 Listeners

When a plain communication status changes, OpenDDS invokes the most specific relevant

listener operation. This means, for example, that a data reader’s listener would take

precedence over the subscriber’s listener for statuses related to the data reader.

The following sections define the different listener interfaces. For more details on the

individual statuses, see 4.2 .

 4.3.1 Topic Listener

interface TopicListener : Listener {
 void on_inconsistent_topic(in Topic the_topic,
 in InconsistentTopicStatus status);
};

 4.3.2 Data Writer Listener

interface DataWriterListener : Listener {
 void on_offered_deadline_missed(in DataWriter writer,
 in OfferedDeadlineMissedStatus status);
 void on_offered_incompatible_qos(in DataWriter writer,
 in OfferedIncompatibleQosStatus status);
 void on_liveliness_lost(in DataWriter writer,
 in LivelinessLostStatus status);
 void on_publication_matched(in DataWriter writer,
 in PublicationMatchedStatus status);
};

 4.3.3 Publisher Listener

interface PublisherListener : DataWriterListener {
};

 4.3.4 Data Reader Listener

interface DataReaderListener : Listener {
 void on_requested_deadline_missed(in DataReader the_reader,
 in RequestedDeadlineMissedStatus status);
 void on_requested_incompatible_qos(in DataReader the_reader,
 in RequestedIncompatibleQosStatus status);
 void on_sample_rejected(in DataReader the_reader,
 in SampleRejectedStatus status);
 void on_liveliness_changed(in DataReader the_reader,
 in LivelinessChangedStatus status);
 void on_data_available(in DataReader the_reader);
 void on_subscription_matched(in DataReader the_reader,
 in SubscriptionMatchedStatus status);
 void on_sample_lost(in DataReader the_reader,
 in SampleLostStatus status);
};

6 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Conditions and Listeners

 4.3.5 Subscriber Listener

interface SubscriberListener : DataReaderListener {
 void on_data_on_readers(in Subscriber the_subscriber);
};

 4.3.6 Domain Participant Listener

interface DomainParticipantListener : TopicListener,
 PublisherListener,
 SubscriberListener {
};

 4.4 Conditions
The DDS specification defines four types of condition:

• Status Condition

• Read Condition

• Query Condition

• Guard Condition

 4.4.1 Status Condition
Each entity has a status condition object associated with it and a get_statuscondition()

operation that lets applications access the status condition. Each condition has a set of

enabled statuses that can trigger that condition. Attaching one or more conditions to a wait

set allows application developers to wait on the condition’s status set. Once an enabled

status is triggered, the wait call returns from the wait set and the developer can query the

relevant status condition on the entity. Querying the status condition resets the status.

 4.4.1.1 Status Condition Example
This example enables the Offered Incompatible QoS status on a data writer, waits for it, and

then queries it when it triggers. The first step is to get the status condition from the data

writer, enable the desired status, and attach it to a wait set:

 DDS::StatusCondition_var cond = data_writer->get_statuscondition();
 cond->set_enabled_statuses(DDS::OFFERED_INCOMPATIBLE_QOS_STATUS);

 DDS::WaitSet_var ws = new DDS::WaitSet;
 ws->attach_condition(cond);

Now we can wait ten seconds for the condition:

7 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 4.4 Conditions

 DDS::ConditionSeq active;
 DDS::Duration_t ten_seconds = {10, 0};
 int result = ws->wait(active, ten_seconds);

The result of this operation is either a timeout or a set of triggered conditions in the active

sequence:

 if (result == DDS::RETCODE_TIMEOUT) {
 cout << "Wait timed out" << std::endl;
 } else if (result == DDS::RETCODE_OK) {
 DDS::OfferedIncompatibleQosStatus incompatibleStatus;
 data_writer->get_offered_incompatible_qos(incompatibleStatus);
 // Access status fields as desired...
 }

Developers have the option of attaching multiple conditions to a single wait set as well as

enabling multiple statuses per condition.

 4.4.2 Additional Condition Types
The DDS specification also defines three other types of conditions: read conditions, query

conditions, and guard conditions. These conditions do not directly involve the processing of

statuses but allow the integration of other activities into the condition and wait set

mechanisms. These are other conditions are briefly described here. For more information

see the DDS specification or the OpenDDS tests in $DDS_ROOT/tests/.

 4.4.2.1 Read Conditions
Read conditions are created using the data reader and the same masks that are passed to

the read and take operations. When waiting on this condition, it is triggered whenever

samples match the specified masks. Those samples can then be retrieved using the

read_w_condition() and take_w_condition() operations which take the read condition as

a parameter.

 4.4.2.2 Query Conditions
Query conditions are a specialized form of read conditions that are created with a limited

form of an SQL-like query. This allows applications to filter the data samples that trigger the

condition and then are read use the normal read condition mechanisms. See Section 5.3 for

more information about query conditions.

7 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Conditions and Listeners

 4.4.2.3 Guard Conditions
The guard condition is a simple interface that allows the application to create its own

condition object and trigger it when application events (external to OpenDDS) occur.

7 2 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 5

Content-Subscription Profile

 5.1 Introduction
The Content-Subscription Profile of DDS consists of three features which enable a data

reader’s behavior to be influenced by the content of the data samples it receives. These

three features are:

• Content-Filtered Topic

• Query Condition

• Multi Topic

The content-filtered topic and multi topic interfaces inherit from the TopicDescription

interface (and not from the Topic interface, as the names may suggest).

Content-filtered topic and query condition allow filtering (selection) of data samples using a

SQL-like parameterized query string. Additionally, query condition allows sorting the result

set returned from a data reader’s read() or take() operation. Multi topic also has this

selection capability as well as the ability to aggregate data from different data writers into a

single data type and data reader.

If you are not planning on using the Content-Subscription Profile features in your

application, you can configure OpenDDS to remove support for it at build time. See page 15

for information on disabling this support.

7 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Content-Subscription Profile

 5.2 Content-Filtered Topic
The domain participant interface contains operations for creating and deleting a content-

filtered topic. Creating a content-filtered topic requires the following parameters:

• Name

Assigns a name to this content-filtered topic which could later be used with the

lookup_topicdescription() operation.

• Related topic

Specifies the topic that this content-filtered topic is based on. This is the same topic that

matched data writers will use to publish data samples.

• Filter expression

An SQL-like expression (see section 5.2.1) which defines the subset of samples

published on the related topic that should be received by the content-filtered topic’s

data readers.

• Expression parameters

The filter expression can contain parameter placeholders. This argument provides initial

values for those parameters. The expression parameters can be changed after the

content-filtered topic is created (the filter expression cannot be changed).

Once the content-filtered topic has been created, it is used by the subscriber’s

create_datareader() operation to obtain a content-filtering data reader. This data reader

is functionally equivalent to a normal data reader except that incoming data samples which

do not meet the filter expression’s criteria are dropped.

Filter expressions are first evaluated at the publisher so that data samples which would be

ignored by the subscriber can be dropped before even getting to the transport. This feature

can be turned off with -DCPSPublisherContentFilter 0 or the equivalent setting in the

[common] section of the configuration file. The behavior of non-default DEADLINE or

LIVELINESS QoS policies may be affected by this policy. Special consideration must be given

to how the “missing” samples impact the QoS behavior, see the document in

docs/design/CONTENT_SUBSCRIPTION.

RTPS_UDP transport does not always do Writer-side filtering. It does not currently

implement transport level filtering, but may be able to filter above the transport layer.

7 4 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 5.2 Content-Filtered Topic

 5.2.1 Filter Expressions
The formal grammar for filter expressions is defined in Annex A of the DDS specification.

This section provides an informal summary of that grammar. Query expressions (5.3.1) and

topic expressions (5.4.1) are also defined in Annex A.

Filter expressions are combinations of one or more predicates. Each predicate is a logical

expression taking one of two forms:

• <arg1> <RelOp> <arg2>

– arg1 and arg2 are arguments which may be either a literal value (integer,

character, floating-point, string, or enumeration), a parameter placeholder of

the form %n (where n is a zero-based index into the parameter sequence), or a

field reference.

– At least one of the arguments must be a field reference, which is the name of an

IDL struct field, optionally followed by any number of ‘.’ and another field name

to represent nested structures.

– RelOp is a relational operator from the list: =, >, >=, <, <=, <>, and ‘like’. ‘like’

is a wildcard match using % to match any number of characters and _ to match a

single character.

– Examples of this form of predicate include: a = 'z', b <> 'str', c < d, e =

'enumerator', f >= 3.14e3, 27 > g, h <> i, j.k.l like %0

• <arg1> [NOT] BETWEEN <arg2> AND <arg3>

– In this form, argument 1 must be a field reference and arguments 2 and 3 must

each be a literal value or parameter placeholder.

Any number of predicates can be combined through the use of parenthesis and the Boolean

operators AND, OR, and NOT to form a filter expression.

 5.2.2 Expression Parameters
Expression parameters allow more flexibility since the filter can effectively change at

runtime. To use expression parameters, add parameter placeholders in the filter expression

wherever a literal would be used. For example, an expression to select all samples that

have a string field with a fixed value (m = ‘A’) could instead use a placeholder which would

be written as m = %0. Placeholders consist of a percent sign followed by a decimal integer

between 0 and 99 inclusive.

7 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Content-Subscription Profile

Using a filter that contains placeholders requires values for each placeholder which is used

in the expression to be provided by the application in the corresponding index of the

expression parameters sequence (placeholder %0 is sequence[0]). The application can set

the parameter sequence when the content-filtered topic is created

(create_contentfilteredtopic) or after it already exists by using

set_expression_parameters. A valid value for each used placeholder must be in the

parameters sequence whenever the filter is evaluated, for example when a data reader

using the content-filtered topic is enabled.

The type used for the parameters sequence in the DDS-DCPS API is a sequence of strings.

The application must format this string based on how the parameter is used:

• For a number (integer or floating point), provide the decimal representation in the

same way it would appear as a C++ or Java literal.

• For a character or string, provide the character(s) directly without quoting

• For an enumerated type, provide one of the enumerators as if it was a string

 5.2.3 Filtering And Dispose/Unregister Samples
DataReaders without filtering can see samples with the valid_data field of SampleInfo set

to false. This happens when the matching DataWriter disposes or unregisters the instance.

Content filtering (whether achieved through Content-Filtered Topics, Query Conditions, or

Multi Topics) will filter such samples when the filter expression explicitly uses key fields.

Filter expressions that don’t meet that criteria will result in no such samples passing the

filter.

 5.2.4 Content-Filtered Topic Example
The code snippet below creates a content-filtered topic for the Message type. First, here is

the IDL for Message:

 module Messenger {
 @topic
 struct Message {
 long id;
 };
 };

Next we have the code that creates the data reader:

 CORBA::String_var type_name = message_type_support->get_type_name();
 DDS::Topic_var topic = dp->create_topic("MyTopic",
 type_name,
 TOPIC_QOS_DEFAULT, 0, 0);
 DDS::ContentFilteredTopic_var cft =
 participant->create_contentfilteredtopic("MyTopic-Filtered",

7 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 5.2 Content-Filtered Topic

 topic,
 "id > 1",
 StringSeq());
 DDS::DataReader_var dr =
 subscriber->create_datareader(cft,
 DATAREADER_QOS_DEFAULT, 0, 0);

The data reader ‘dr’ will only receive samples that have values of ‘id’ greater than 1.

 5.3 Query Condition
The query condition interface inherits from the read condition interface, therefore query

conditions have all of the capabilities of read conditions along with the additional

capabilities described in this section. One of those inherited capabilities is that the query

condition can be used like any other condition with a wait set (see Section 4.4).

The DataReader interface contains operations for creating (create_querycondition) and

deleting (delete_readcondition) a query condition. Creating a query condition requires

the following parameters:

• Sample, view, and instance state masks

These are the same state masks that would be passed to create_readcondition(),

read(), or take().

• Query expression

An SQL-like expression (see 5.3.1) describing a subset of samples which cause the

condition to be triggered. This same expression is used to filter the data set returned

from a read_w_condition() or take_w_condition() operation. It may also impose a

sort order (ORDER BY) on that data set.

• Query parameters

The query expression can contain parameter placeholders. This argument provides

initial values for those parameters. The query parameters can be changed after the

query condition is created (the query expression cannot be changed).

A particular query condition can be used with a wait set (attach_condition), with a data

reader (read_w_condition, take_w_condition, read_next_instance_w_condition,

take_next_instance_w_condition), or both. When used with a wait set, the ORDER BY

clause has no effect on triggering the wait set. When used with a data reader’s read*() or

take*() operation, the resulting data set will only contain samples which match the query

expression and they will be ordered by the ORDER BY fields, if an ORDER BY clause is present.

7 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Content-Subscription Profile

 5.3.1 Query Expressions
Query expressions are a super set of filter expressions (see section 5.2.1). Following the

filter expression, the query expression can optionally have an ORDER BY keyword followed by

a comma-separated list of field references. If the ORDER BY clause is present, the filter

expression may be empty. The following strings are examples of query expressions:

• m > 100 ORDER BY n

• ORDER BY p.q, r, s.t.u

• NOT v LIKE 'z%'

Query expressions can use parameter placeholders in the same way that filter expressions

(for content-filtered topics) use them. See section 5.2.2 for details.

 5.3.2 Query Condition Example
The following code snippet creates and uses a query condition for a type that uses struct

‘Message’ with field ‘key’ (an integral type).

 DDS::QueryCondition_var dr_qc =
 dr->create_querycondition(DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ALIVE_INSTANCE_STATE,
 "key > 1",
 DDS::StringSeq());
 DDS::WaitSet_var ws = new DDS::WaitSet;
 ws->attach_condition(dr_qc);
 DDS::ConditionSeq active;
 DDS::Duration_t three_sec = {3, 0};
 DDS::ReturnCode_t ret = ws->wait(active, three_sec);
 // error handling not shown
 ws->detach_condition(dr_qc);
 MessageDataReader_var mdr = MessageDataReader::_narrow(dr);
 MessageSeq data;
 DDS::SampleInfoSeq infoseq;
 ret = mdr->take_w_condition(data, infoseq, DDS::LENGTH_UNLIMITED, dr_qc);
 // error handling not shown
 dr->delete_readcondition(dr_qc);

Any sample received with key <= 1 would neither trigger the condition (to satisfy the wait)

nor be returned in the ‘data’ sequence from take_w_condition().

 5.4 Multi Topic
Multi topic is a more complex feature than the other two Content-Subscription features,

therefore describing it requires some new terminology.

The MultiTopic interface inherits from the TopicDescription interface, just like

ContentFilteredTopic does. A data reader created for the multi topic is known as a “multi

7 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 5.4 Multi Topic

topic data reader.” A multi topic data reader receives samples belonging to any number of

regular topics. These topics are known as its “constituent topics.” The multi topic has a

DCPS data type known as the “resulting type.” The multi topic data reader implements the

type-specific data reader interface for the resulting type. For example, if the resulting type

is Message, then the multi topic data reader can be narrowed to the MessageDataReader

interface.

The multi topic’s topic expression (see section 5.4.1) describes how the distinct fields of

the incoming data (on the constituent topics) are mapped to the fields of the resulting type.

The domain participant interface contains operations for creating and deleting a multi topic.

Creating a multi topic requires the following parameters:

• Name

Assigns a name to this multi topic which could later be used with the

lookup_topicdescription() operation.

• Type name

Specifies the resulting type of the multi topic. This type must have its type support

registered before creating the multi topic.

• Topic expression (also known as subscription expression)

An SQL-like expression (see section 5.4.1) which defines the mapping of constituent

topic fields to resulting type fields. It can also specify a filter (WHERE clause).

• Expression parameters

The topic expression can contain parameter placeholders. This argument provides initial

values for those parameters. The expression parameters can be changed after the multi

topic is created (the topic expression cannot be changed).

Once the multi topic has been created, it is used by the subscriber’s create_datareader()

operation to obtain a multi topic data reader. This data reader is used by the application to

receive the constructed samples of the resulting type. The manner in which these samples

are constructed is described below in section 5.4.2.2 .

 5.4.1 Topic Expressions
Topic expressions use a syntax that is very similar to a complete SQL query:

SELECT <aggregation> FROM <selection> [WHERE <condition>]

• The aggregation can be either a “*” or a comma separated list of field specifiers. Each

field specifier has the following syntax:

– <constituent_field> [[AS] <resulting_field>]]

7 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Content-Subscription Profile

– constituent_field is a field reference (see section 5.2.1) to a field in one of the

constituent topics (which topic is not specified).

– The optional resulting_field is a field reference to a field in the resulting type. If

present, the resulting_field is the destination for the constituent_field in the

constructed sample. If absent, the constituent_field data is assigned to a field

with the same name in the resulting type. The optional “AS” has no effect.

– If a “*” is used as the aggregation, each field in the resulting type is assigned

the value from a same-named field in one of the constituent topic types.

• The selection lists one or more constituent topic names. Topic names are separated by a

“join” keyword (all 3 join keywords are equivalent):

– <topic> [{NATURAL INNER | NATURAL | INNER NATURAL} JOIN <topic>]...

– Topic names must contain only letters, digits, and dashes (but may not start

with a digit).

– The natural join operation is commutative and associative, thus the order of

topics has no impact.

– The semantics of the natural join are that any fields with the same name are

treated as “join keys” for the purpose of combining data from the topics in

which those keys appear. The join operation is described in more detail in the

subsequent sections of this chapter.

• The condition has the exact same syntax and semantics as the filter expression (see

section 5.2.1). Field references in the condition must match field names in the

resulting types, not field names in the constituent topic types. The condition in the topic

expression can use parameter placeholders in the same way that filter expressions (for

content-filtered topics) use them. See section 5.2.2 for details.

 5.4.2 Usage Notes

 5.4.2.1 Join Keys and DCPS Data Keys
The concept of DCPS data keys (@key) has already been discussed in Section 2.1.1. Join keys

for the multi topic are a distinct but related concept.

A join key is any field name that occurs in the struct for more than one constituent topic.

The existence of the join key enforces a constraint on how data samples of those topics are

combined into a constructed sample (see section 5.4.2.2). Specifically, the value of that key

must be equal for those data samples from the constituent topics to be combined into a

8 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 5.4 Multi Topic

sample of the resulting type. If multiple join keys are common to the same two or more

topics, the values of all keys must be equal in order for the data to be combined.

The DDS specification requires that join key fields have the same type. Additionally,

OpenDDS imposes two requirements on how the IDL must define DCPS data keys to work

with multi topics:

1) Each join key field must also be a DCPS data key for the types of its constituent

topics.

2) The resulting type must contain each of the join keys, and those fields must be

DCPS data keys for the resulting type.

The example in section 5.4.3.1 meets both of these requirements. Note that it is not

necessary to list the join keys in the aggregation (SELECT clause).

 5.4.2.2 How Resulting Samples are Constructed
Although many concepts in multi topic are borrowed from the domain of relational

databases, a real-time middleware such as DDS is not a database. Instead of processing a

batch of data at a time, each sample arriving at the data reader from one of the constituent

topics triggers multi-topic-specific processing that results in the construction of zero, one,

or many samples of the resulting type and insertion of those constructed samples into the

multi topic data reader.

Specifically, the arrival of a sample on constituent topic “A” with type “TA” results in the

following steps in the multi topic data reader (this is a simplification of the actual

algorithm):

1) A sample of the resulting type is constructed, and fields from TA which exist in the

resulting type and are in the aggregation (or are join keys) are copied from the

incoming sample to the constructed sample.

2) Each topic “B” which has at least one join key in common with A is considered for a join

operation. The join reads READ_SAMPLE_STATE samples on topic B with key values

matching those in the constructed sample. The result of the join may be zero, one, or

many samples. Fields from TB are copied to the resulting sample as described in step 1.

3) Join keys of topic “B” (connecting it to other topics) are then processed as described in

step 2, and this continues to all other topics that are connected by join keys.

4) Any constituent topics that were not visited in steps 2 or 3 are processed as “cross

joins” (also known as cross-product joins). These are joins with no key constraints.

8 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Content-Subscription Profile

5) If any constructed samples result, they are inserted into the multi topic data reader’s

internal data structures as if they had arrived via the normal mechanisms. Application

listeners and conditions are notified.

 5.4.2.3 Use with Subscriber Listeners
If the application has registered a subscriber listener for read condition status changes

(DATA_ON_READERS_STATUS) with the same subscriber that also contains a multi topic, then

the application must invoke notify_datareaders() in its implementation of the subscriber

listener’s on_data_on_readers() callback method. This requirement is necessary because

the multi topic internally uses data reader listeners, which are preempted when a

subscriber listener is registered.

 5.4.3 Multi Topic Example
This example is based on the example topic expression used in Annex A section A.3 of the

DDS specification. It illustrates how the properties of the multi topic join operation can be

used to correlate data from separate topics (and possibly distinct publishers).

 5.4.3.1 IDL and Topic Expression
Often times we will use the same string as both the topic name and topic type. In this

example we will use distinct strings for the type names and topic names, in order to

illustrate when each is used.

Here is the IDL for the constituent topic data types:

@topic
struct LocationInfo {
 @key unsigned long flight_id;
 long x;
 long y;
 long z;
};

@topic
struct PlanInfo {
 @key unsigned long flight_id;
 string flight_name;
 string tailno;
};

Note that the names and types of the key fields match, so they are designed to be used as

join keys. The resulting type (below) also has that key field.

Next we have the IDL for the resulting data type:

@topic
struct Resulting {

8 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 5.4 Multi Topic

 @key unsigned long flight_id;
 string flight_name;
 long x;
 long y;
 long height;
};

Based on this IDL, the following topic expression can be used to combine data from a topic

Location which uses type LocationInfo and a topic FlightPlan which uses type PlanInfo:

SELECT flight_name, x, y, z AS height FROM Location NATURAL JOIN FlightPlan WHERE height
< 1000 AND x <23

Taken together, the IDL and the topic expression describe how this multi topic will work.

The multi topic data reader will construct samples which belong to instances keyed by

flight_id. The instance of the resulting type will only come into existence once the

corresponding instances are available from both the Location and FlightPlan topics. Some

other domain participant or participants within the domain will publish data on those topics,

and they don’t even need to be aware of one another. Since they each use the same

flight_id to refer to flights, the multi topic can correlate the incoming data from disparate

sources.

 5.4.3.2 Creating the Multi Topic Data Reader
Creating a data reader for the multi topic consists of a few steps. First the type support for

the resulting type is registered, then the multi topic itself is created, followed by the data

reader:

 ResultingTypeSupport_var ts_res = new ResultingTypeSupportImpl;
 ts_res->register_type(dp, "");
 CORBA::String_var type_name = ts_res->get_type_name();
 DDS::MultiTopic_var mt =
 dp->create_multitopic("MyMultiTopic",
 type_name,
 "SELECT flight_name, x, y, z AS height "
 "FROM Location NATURAL JOIN FlightPlan "
 "WHERE height < 1000 AND x<23",
 DDS::StringSeq());
 DDS::DataReader_var dr =
 sub->create_datareader(mt,
 DATAREADER_QOS_DEFAULT,
 NULL,
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);

 5.4.3.3 Reading Data with the Multi Topic Data Reader
From an API perspective, the multi topic data reader is identical to any other typed data

reader for the resulting type. This example uses a wait set and a read condition in order to

block until data is available.

 DDS::WaitSet_var ws = new DDS::WaitSet;
 DDS::ReadCondition_var rc =
 dr->create_readcondition(DDS::ANY_SAMPLE_STATE,

8 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Content-Subscription Profile

 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);
 ws->attach_condition(rc);
 DDS::Duration_t infinite = {DDS::DURATION_INFINITE_SEC,
 DDS::DURATION_INFINITE_NSEC};
 DDS::ConditionSeq active;
 ws->wait(active, infinite); // error handling not shown
 ws->detach_condition(rc);
 ResultingDataReader_var res_dr = ResultingDataReader::_narrow(dr);
 ResultingSeq data;
 DDS::SampleInfoSeq info;
 res_dr->take_w_condition(data, info, DDS::LENGTH_UNLIMITED, rc);

8 4 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 6

Built-In Topics

 6.1 Introduction
In OpenDDS, Built-In-Topics are created and published by default to exchange information

about DDS participants operating in the deployment. When OpenDDS is used in a

centralized discovery approach using the DCPSInfoRepo service, the Built-In-Topics are

published by this service. For DDSI-RTPS discovery, the internal OpenDDS implementation

instantiated in a process populates the caches of the Built-In Topic DataReaders. See

Section 7.3.3 for a description of RTPS discovery configuration.

The IDL struct BuiltinTopicKey_t is used by the Built-In Topics. This structure contains

an array of 16 octets (bytes) which corresponds to an InfoRepo identifier or a DDSI-RTPS

GUID.

 6.2 Built-In Topics for DCPSInfoRepo
Configuration
When starting the DCPSInfoRepo a command line option of -NOBITS may be used to

suppress publication of built-in topics.

Four separate topics are defined for each domain. Each is dedicated to a particular entity

(domain participant, topic, data writer, data reader) and publishes instances describing the

state for each entity in the domain.

8 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Built-In Topics

Subscriptions to built-in topics are automatically created for each domain participant. A

participant’s support for Built-In-Topics can be toggled via the DCPSBit configuration option

(see the table in Section 7.2) (Note: this option cannot be used for RTPS discovery). To view

the built-in topic data, simply obtain the built-in Subscriber and then use it to access the

Data Reader for the built-in topic of interest. The Data Reader can then be used like any

other Data Reader.

Sections 6.3 through 6.6 provide details on the data published for each of the four built-in

topics. An example showing how to read from a built-in topic follows those sections.

If you are not planning on using Built-in-Topics in your application, you can configure

OpenDDS to remove Built-In-Topic support at build time. Doing so can reduce the footprint

of the core DDS library by up to 30%. See Section 1.3.2 for information on disabling Built-

In-Topic support.

 6.3 DCPSParticipant Topic
The DCPSParticipant topic publishes information about the Domain Participants of the

Domain. Here is the IDL that defines the structure published for this topic:

 struct ParticipantBuiltinTopicData {
 BuiltinTopicKey_t key;
 UserDataQosPolicy user_data;
 };

Each Domain Participant is defined by a unique key and is its own instance within this topic.

 6.4 DCPSTopic Topic
OpenDDS does not support this Built-In-Topic when configured for RTPS discovery.

The DCPSTopic topic publishes information about the topics in the domain. Here is the IDL

that defines the structure published for this topic:

 struct TopicBuiltinTopicData {
 BuiltinTopicKey_t key;
 string name;
 string type_name;
 DurabilityQosPolicy durability;
 QosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 TransportPriorityQosPolicy transport_priority;
 LifespanQosPolicy lifespan;
 DestinationOrderQosPolicy destination_order;
 HistoryQosPolicy history;
 ResourceLimitsQosPolicy resource_limits;

8 6 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 6.4 DCPSTopic Topic

 OwnershipQosPolicy ownership;
 TopicDataQosPolicy topic_data;
 };

Each topic is identified by a unique key and is its own instance within this built-in topic. The

members above identify the name of the topic, the name of the topic type, and the set of

QoS policies for that topic.

 6.5 DCPSPublication Topic
The DCPSPublication topic publishes information about the Data Writers in the Domain.

Here is the IDL that defines the structure published for this topic:

 struct PublicationBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;
 LifespanQosPolicy lifespan;
 UserDataQosPolicy user_data;
 OwnershipStrengthQosPolicy ownership_strength;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

Each Data Writer is assigned a unique key when it is created and defines its own instance

within this topic. The fields above identify the Domain Participant (via its key) that the Data

Writer belongs to, the topic name and type, and the various QoS policies applied to the Data

Writer.

 6.6 DCPSSubscription Topic
The DCPSSubscription topic publishes information about the Data Readers in the Domain.

Here is the IDL that defines the structure published for this topic:

 struct SubscriptionBuiltinTopicData {
 BuiltinTopicKey_t key;
 BuiltinTopicKey_t participant_key;
 string topic_name;
 string type_name;
 DurabilityQosPolicy durability;
 DeadlineQosPolicy deadline;
 LatencyBudgetQosPolicy latency_budget;
 LivelinessQosPolicy liveliness;
 ReliabilityQosPolicy reliability;

8 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Built-In Topics

 DestinationOrderQosPolicy destination_order;
 UserDataQosPolicy user_data;
 TimeBasedFilterQosPolicy time_based_filter;
 PresentationQosPolicy presentation;
 PartitionQosPolicy partition;
 TopicDataQosPolicy topic_data;
 GroupDataQosPolicy group_data;
 };

Each Data Reader is assigned a unique key when it is created and defines its own instance

within this topic. The fields above identify the Domain Participant (via its key) that the Data

Reader belongs to, the topic name and type, and the various QoS policies applied to the

Data Reader.

 6.7 Built-In Topic Subscription Example
The following code uses a domain participant to get the built-in subscriber. It then uses the

subscriber to get the Data Reader for the DCPSParticipant topic and subsequently reads

samples for that reader.

 Subscriber_var bit_subscriber = participant->get_builtin_subscriber();
 DDS::DataReader_var dr =
 bit_subscriber->lookup_datareader(BUILT_IN_PARTICIPANT_TOPIC);
 DDS::ParticipantBuiltinTopicDataDataReader_var part_dr =
 DDS::ParticipantBuiltinTopicDataDataReader::_narrow(dr);

 DDS::ParticipantBuiltinTopicDataSeq part_data;
 DDS::SampleInfoSeq infos;
 DDS::ReturnCode_t ret = part_dr->read(part_data, infos, 20,
 DDS::ANY_SAMPLE_STATE,
 DDS::ANY_VIEW_STATE,
 DDS::ANY_INSTANCE_STATE);

 // Check return status and read the participant data

The code for the other built-in topics is similar.

 6.8 OpenDDS-specific Built-In Topics

 6.8.1 OpenDDSParticipantLocation Topic
The Built-In Topic “OpenDDSParticipantLocation” is published by the DDSI-RTPS discovery

implementation to give applications visibility into the details of how each remote participant

is connected over the network.

The IDL for OpenDDSParticipantLocation is in dds/DdsDcpsCore.idl in the OpenDDS::DCPS

module. If the RtpsRelay (15.2) and/or IETF ICE (15.3) are enabled, their usage is reflected

in the OpenDDSParticipantLocation topic data.

8 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 6.8 OpenDDS-specific Built-In Topics

 6.8.2 OpenDDSConnectionRecord Topic
The Built-In Topic “OpenDDSConnectionRecord” is published by the DDSI-RTPS discovery

implementation and RTPS_UDP transport implementation when support for IETF ICE is

enabled. See section 15.3 for details on OpenDDS’s support for IETF ICE. The IDL for

OpenDDSConnectionRecord is in dds/DdsDcpsCore.idl in the OpenDDS::DCPS module.

 6.8.3 OpenDDSInternalThread Topic
The Built-In Topic “OpenDDSInternalThread” is published when OpenDDS is configured

with DCPSThreadStatusInterval (see section 7.2). When enabled, the DataReader for this

Built-In Topic will report the health (responsiveness) of threads created and managed by

OpenDDS within the current process. The IDL for OpenDDSInternalThread is in

dds/DdsDcpsCore.idl in the OpenDDS::DCPS module.

8 9 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 7

Run-time Configuration

 7.1 Configuration Approach
OpenDDS includes a file-based configuration framework for configuring global options and

options related to specific publishers and subscribers such as discovery and transport

configuration. OpenDDS also allows configuration via the command line for a limited

number of options and via a configuration API. This chapter summarizes the configuration

options supported by OpenDDS.

OpenDDS configuration is concerned with three main areas:

1) Common Configuration Options – configure the behavior of DCPS entities at a global

level. This allows separately deployed processes in a computing environment to share

common settings for the specified behavior (e.g. all readers and writers should use

RTPS discovery).

2) Discovery Configuration Options – configure the behavior of the discovery

mechanism(s). OpenDDS supports multiple approaches for discovering and associating

writers and readers as detailed in Section 7.3 .

3) Transport Configuration Options – configure the Extensible Transport Framework

(ETF) which abstracts the transport layer from the DCPS layer of OpenDDS. Each

pluggable transport can be configured separately.

9 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

The configuration file for OpenDDS is a human-readable ini-style text file. Table 7-1 shows a

list of the available configuration section types as they relate to the area of OpenDDS that

they configure.

Table 7-1 Configuration File Sections

Focus Area File Section Title
Global Settings [common]

Discovery

[domain]

[repository]

[rtps_discovery]

Static Discovery

[endpoint]

[topic]

[datawriterqos]

[datareaderqos]

[publisherqos]

[subscriberqos]

Transport
[config]

[transport]

For each of the section types with the exception of [common], the syntax of a section header

takes the form of [section type/instance]. For example, a [repository] section type

would always be used in a configuration file like so:

[repository/repo_1] where repository is the section type and repo_1 is an instance

name of a repository configuration. How to use instances to configure discovery and

transports is explained further in Sections 7.3 and 7.4 .

The -DCPSConfigFile command-line argument can be used to pass the location of a

configuration file to OpenDDS. For example:

Windows:

 publisher -DCPSConfigFile pub.ini

Unix:

 ./publisher -DCPSConfigFile pub.ini

Command-line arguments are passed to the service participant singleton when initializing

the domain participant factory. This is accomplished by using the

TheParticipantFactoryWithArgs macro:

9 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.1 Configuration Approach

#include <dds/DCPS/Service_Participant.h>

int main (int argc, char* argv[])
{

 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);

To set a default configuration file to load, use

TheServiceParticipant->default_configuration_file(ACE_TCHAR* path), like in the

following example:

#include <dds/DCPS/Service_Participant.h>

int main (int argc, char* argv[])
{

 TheServiceParticipant->default_configuration_file(ACE_TEXT(“pub.ini”));

 DDS::DomainParticipantFactory_var dpf =
 TheParticipantFactoryWithArgs(argc, argv);

pub.ini would be used unless -DCPSConfigFile is passed to override the default

configuration file.

The Service_Participant class also provides methods that allow an application to

configure the DDS service. See the header file

$DDS_ROOT/dds/DCPS/Service_Participant.h for details.

The following subsections detail each of the configuration file sections and the available

options related to those sections.

 7.2 Common Configuration Options
The [common] section of an OpenDDS configuration file contains options such as the

debugging output level, the location of the DCPSInfoRepo process, and memory

preallocation settings. A sample [common] section follows:

 [common]
 DCPSDebugLevel=0
 DCPSInfoRepo=localhost:12345
 DCPSLivelinessFactor=80
 DCPSChunks=20
 DCPSChunksAssociationMultiplier=10
 DCPSBitLookupDurationMsec=2000
 DCPSPendingTimeout=30

It is not necessary to specify every option.

9 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option values in the [common] section with names that begin with “DCPS” can be overridden

by a command-line argument. The command-line argument has the same name as the

configuration option with a “-” prepended to it. For example:

 subscriber -DCPSInfoRepo localhost:12345

The following table summarizes the [common] configuration options:

Table 7-2 Common Configuration Options

Option Description Default

DCPSBit=[1|0] Toggle Built-In-Topic support. 1

DCPSBitLookupDurationMsec=msec

The maximum duration in milliseconds that the framework

will wait for latent Built-In Topic information when

retrieving BIT data given an instance handle. The

participant code may get an instance handle for a remote

entity before the framework receives and processes the

related BIT information. The framework waits for up to the

given amount of time before it fails the operation.

2000

DCPSBitTransportIPAddress=addr

IP address identifying the local interface to be used by tcp

transport for the Built-In Topics.

NOTE: This property is only applicable to a DCPSInfoRepo

configuration.

INADDR_ANY

DCPSBitTransportPort=port

Port used by the tcp transport for Built-In Topics.If the

default of ‘0’ is used, the operating system will choose a port

to use.

NOTE: This property is only applicable to a DCPSInfoRepo

configuration.

0

DCPSChunks=n

Configurable number of chunks that a data writer's and

reader's cached allocators will preallocate when the

RESOURCE_LIMITS QoS value is infinite. When all of the

preallocated chunks are in use, OpenDDS allocates from the

heap.

20

DCPSChunkAssociationMultiplier=n

Multiplier for the DCPSChunks or

resource_limits.max_samples value to determine the total

number of shallow copy chunks that are preallocated. Set

this to a value greater than the number of connections so

the preallocated chunk handles do not run out. A sample

written to multiple data readers will not be copied multiple

times but there is a shallow copy handle to that sample used

to manage the delivery to each data reader. The size of the

handle is small so there is not great need to set this value

close to the number of connections.

10

9 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.2 Common Configuration Options

Option Description Default

DCPSDebugLevel=n
Integer value that controls the amount of debug information

the DCPS layer prints. Valid values are 0 through 10.
0

ORBLogFile=filename

Change log message destination to the file specified, which

is opened in appending mode. See the note below this table

regarding the ORB prefix.

None: use

standard error

ORBVerboseLogging=[0|1|2]

Add a prefix to each log message, using a format defined by

the ACE library:

0 – no prefix

1 – verbose “lite”: adds timestamp and priority

2 – verbose: in addition to “lite” has host name, PID,

program name

See the note below this table regarding the ORB prefix.

0

DCPSDefaultAddress=addr

Default value for the host portion of local_address for

transport instances containing a local_address. Only

applied when DCPSDefaultAddress is set to a non-empty

value and no local_address is specified in the transport.

Other subsystems (such as DDSI-RTPS Discovery) use

DCPSDefaultAddress as a default value as well.

DCPSDefaultDiscovery=[

 DEFAULT_REPO|

 DEFAULT_RTPS|

 DEFAULT_STATIC|

 user-defined configuration

instance name]

Specifies a discovery configuration to use for any domain

not explicitly configured. DEFAULT_REPO translates to using

the DCPSInfoRepo. DEFAULT_RTPS specifies the use of RTPS

for discovery. DEFAULT_STATIC specifies the use of static

discovery. See Section 7.3 for details about configuring

discovery.

DEFAULT_REPO

DCPSGlobalTransportConfig=name

Specifies the name of the transport configuration that

should be used as the global configuration. This

configuration is used by all entities that do not otherwise

specify a transport configuration. A special value of $file

uses a transport configuration that includes all transport

instances defined in the configuration file.

The default
configuration is
used as described
in 7.4.1

DCPSInfoRepo=objref

Object reference for locating the DCPS Information

Repository. This can either be a full CORBA IOR or a simple

host:port string.

file://repo.ior

DCPSLivelinessFactor=n

Percent of the liveliness lease duration after which a

liveliness message is sent. A value of 80 implies a 20%

cushion of latency from the last detected heartbeat

message.

80

9 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description Default
DCPSLogLevel=

 none|

 error|

 warning|

 notice|

 info|

 debug

General logging control. See section 7.6 for details. warning

DCPSMonitor=[0|1]
Use the OpenDDS_monitor library to publish data on

monitoring topics (see dds/monitor/README).
0

DCPSPendingTimeout=sec

The maximum duration in seconds a data writer will block to

allow unsent samples to drain on deletion. By default, this

option blocks indefinitely.

0

DCPSPersistentDataDir=path

The path on the file system where durable data will be

stored. If the directory does not exist it will be created

automatically.

OpenDDS-durable-

data-dir

DCPSPublisherContentFilter=[1|0]

Controls the filter expression evaluation policy for content

filtered topics. When enabled (1), the publisher may drop

any samples, before handing them off to the transport when

these samples would have been ignored by all subscribers.

1

DCPSSecurity=[0|1]

This setting is only available when OpenDDS is compiled

with DDS Security enabled. If set to 1, enable DDS Security

framework and built-in plugins. Each Domain Participant

using security must be created with certain QoS policy

values. See chapter 14: DDS Security for more information.

0

DCPSSecurityDebug=CAT[,CAT...]

This setting is only available when OpenDDS is compiled

with DDS Security enabled. This controls the security debug

logging granularity by category. See Section 7.6.3

“Security Debug Logging” for details.

0

DCPSSecurityDebugLevel=n

This setting is only available when OpenDDS is compiled

with DDS Security enabled. This controls the security debug

logging granularity by debug level. See Section 7.6.3

“Security Debug Logging” for details.

N/A

DCPSSecurityFakeEncryption=[0|1]

This setting is only available when OpenDDS is compiled

with DDS Security enabled. This option, when set to 1,

disables all encryption by making encryption and decryption

no-ops. OpenDDS still generates keys and performs other

security bookkeeping, so this option is useful for debugging

the security infrastructure by making it possible to manually

inspect all messages.

0

9 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.2 Common Configuration Options

Option Description Default

DCPSTransportDebugLevel=n
Integer value that controls the amount of debug information

the transport layer prints. See section 7.6.2 for details.
0

pool_size=n_bytes Size of safety profile memory pool, in bytes.
41943040 (40

MiB)

pool_granularity=n_bytes
Granularity of safety profile memory pool in bytes. Must be

multiple of 8.
8

Scheduler=[

 SCHED_RR|

 SCHED_FIFO|

 SCHED_OTHER]

Selects the thread scheduler to use. Setting the scheduler to

a value other than the default requires privileges on most

systems. A value of SCHED_RR, SCHED_FIFO, or SCHED_OTHER

can be set. SCHED_OTHER is the default scheduler on most

systems; SCHED_RR is a round robin scheduling algorithm;

and SCHED_FIFO allows each thread to run until it either

blocks or completes before switching to a different thread.

SCHED_OTHER

scheduler_slice=usec

Some operating systems, such as SunOS, require a time

slice value to be set when selecting schedulers other than

the default. For those systems, this option can be used to set

a value in microseconds.

none

DCPSBidirGIOP=[0|1]

Use TAO’s BiDirectional GIOP feature for interaction with

the DCPSInfoRepo. With BiDir enabled, fewer sockets are

needed since the same socket can be used for both client

and server roles.

1

DCPSThreadStatusInterval=sec
Enable internal thread status reporting (see section 6.8.3)

using the specified reporting interval, in seconds.
0 (disabled)

9 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description Default

DCPSTypeObjectEncoding=[

 Normal |

 WriteOldFormat |

 ReadOldFormat]

Before version 3.18, OpenDDS had a bug in the encoding

used for TypeObject (from XTypes) and related data types.

If this application needs to be compatible with an

application built with an older OpenDDS (that has XTypes),

select one of WriteOldFormat or ReadOldFormat.

Using WriteOldFormat means that the TypeInformation

written by this application will be understood by legacy

applications.

Using WriteOldFormat or ReadOldFormat means that

TypeInformation written in the legacy format will be

understood by this application.

These options are designed to enable a phased migration

from the incorrect implementation (pre-3.18) to a compliant

one. In the first phase, legacy applications can coexist with

WriteOldFormat. In the second phase (once all legacy

applications have been upgraded), WriteOldFormat can

communicate with ReadOldFormat. In the final phase (once

all WriteOldFormat applications have been upgraded),

ReadOldFormat applications can be transitioned to Normal.

Normal

The DCPSInfoRepo option’s value is passed to CORBA::ORB::string_to_object() and can

be any Object URL type understandable by TAO (file, IOR, corbaloc, corbaname). A

simplified endpoint description of the form <host>:<port> is also accepted. It is equivalent

to corbaloc::<host>:<port>/DCPSInfoRepo.

Certain options that begin with “ORB” instead of “DCPS” are listed in the table above. They

are named differently since they are inherited from TAO. The options starting with “ORB”

listed in this table are implemented directly by OpenDDS (not passed to TAO) and are

supported either on the command line (using a “-” prefix) or in the configuration file. Other

command-line options that begin with “-ORB” are passed to TAO’s ORB_init if

DCPSInfoRepo discovery is used.

The DCPSChunks option allows application developers to tune the amount of memory

preallocated when the RESOURCE_LIMITS are set to infinite. Once the allocated memory is

exhausted, additional chunks are allocated/deallocated from the heap. This feature of

allocating from the heap when the preallocated memory is exhausted provides flexibility but

performance will decrease when the preallocated memory is exhausted.

9 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

 7.3 Discovery Configuration
In DDS implementations, participants are instantiated in application processes and must

discover one another in order to communicate. A DDS implementation uses the feature of

domains to give context to the data being exchanged between DDS participants in the same

domain. When DDS applications are written, participants are assigned to a domain and need

to ensure their configuration allows each participant to discover the other participants in

the same domain.

OpenDDS offers a centralized discovery mechanism, a peer-to-peer discovery mechanism,

and a static discovery mechanism. The centralized mechanism uses a separate service

running a DCPSInfoRepo process. The RTPS peer-to-peer mechanism uses the DDSI-RTPS

discovery protocol standard to achieve non-centralized discovery. The static discovery

mechanism uses the configuration file to determine which writers and readers should be

associated and uses the underlying transport to determine which writers and readers exist.

A number of configuration options exist to meet the deployment needs of DDS applications.

Except for static discovery, each mechanism uses default values if no configuration is

supplied either via the command line or configuration file.

The following sections show how to configure the advanced discovery capabilities. For

example, some deployments may need to use multiple DCPSInfoRepo services or DDSI-RTPS

discovery to satisfy interoperability requirements.

 7.3.1 Domain Configuration
An OpenDDS configuration file uses the [domain] section type to configure one or more

discovery domains with each domain pointing to a discovery configuration in the same file

or a default discovery configuration. OpenDDS applications can use a centralized discovery

approach using the DCPSInfoRepo service or a peer-to-peer discovery approach using the

RTPS discovery protocol standard or a combination of the two in the same deployment. The

section type for the DCPSInfoRepo method is [repository] and the section type for an

RTPS discovery configuration is [rtps_discovery]. The static discovery mechanism does

not have a dedicated section. Instead, users are expected to refer to the DEFAULT_STATIC

instance. A single domain can refer to only one type of discovery section.

See Sections 7.3.2 for configuring [repository] sections, 7.3.3 for configuring

[rtps_discovery], and 7.3.4 for configuring static discovery.

Ultimately a domain is assigned an integer value and a configuration file can support this in

two ways. The first is to simply make the instance value the integer value assigned to the

domain as shown here:

9 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

[domain/1]
DiscoveryConfig=DiscoveryConfig1
 (more properties...)

Our example configures a single domain identified by the domain keyword and followed by

an instance value of /1. The instance value after the slash in this case is the integer value

assigned to the domain. An alternative syntax for this same content is to use a more

recognizable (friendly) name instead of a number for the domain name and then add the

DomainId property to the section to give the integer value. Here is an example:

[domain/books]
DomainId=1
DiscoveryConfig=DiscoveryConfig1

The domain is given a friendly name of books. The DomainId property assigns the integer

value of 1 needed by a DDS application reading the configuration. Multiple domain

instances can be identified in a single configuration file in this format.

Once one or more domain instances are established, the discovery properties must be

identified for that domain. The DiscoveryConfig property must either point to another

section that holds the discovery configuration or specify one of the internal default values

for discovery (e.g. DEFAULT_REPO, DEFAULT_RTPS, or DEFAULT_STATIC). The instance name in

our example is DiscoveryConfig1. This instance name must be associated with a section

type of either [repository] or [rtps_discovery].

Here is an extension of our example:

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

In this case our domain points to a [repository] section which is used for an OpenDDS

DCPSInfoRepo service. See Section 7.3.2 for more details.

There are going to be occasions when specific domains are not identified in the

configuration file. For example, if an OpenDDS application assigns a domain ID of 3 to its

participants and the above example does not supply a configuration for domain id of 3 then

the following can be used:

[common]
DCPSInfoRepo=host3.mydomain.com:12345
DCPSDefaultDiscovery=DEFAULT_REPO

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

1 0 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

The DCPSDefaultDiscovery property tells the application to assign any participant that

doesn’t have a domain id found in the configuration file to use a discovery type of

DEFAULT_REPO which means “use a DCPSInfoRepo service” and that DCPSInfoRepo service

can be found at host3.mydomain.com:12345.

As shown in Table 7-2 the DCPSDefaultDiscovery property has three other values that can

be used. The DEFAULT_RTPS constant value informs participants that don’t have a domain

configuration to use RTPS discovery to find other participants. Similarly, the

DEFAULT_STATIC constant value informs the participants that don't have a domain

configuration to use static discovery to find other participants.

The final option for the DCPSDefaultDiscovery property is to tell an application to use one

of the defined discovery configurations to be the default configuration for any participant

domain that isn’t called out in the file. Here is an example:

[common]

DCPSDefaultDiscovery=DiscoveryConfig2

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

By adding the DCPSDefaultDiscovery property to the [common] section, any participant

that hasn’t been assigned to a domain id of 1 or 2 will use the configuration of

DiscoveryConfig2. For more explanation of a similar configuration for RTPS discovery see

Section 7.3.3.

Here are the available properties for the [domain] section.

Table 7-3 Domain Section Configuration Properties

Option Description

DomainId=n
An integer value representing a Domain being

associated with a repository.

DomainRepoKey=k
Key value of the mapped repository

(Deprecated. Provided for backward compatibility).

1 0 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description

DiscoveryConfig=config instance name

A user-defined string that refers to the instance

name of a [repository] or [rtps_discovery]

section in the same configuration file or one of the

internal default values (DEFAULT_REPO,

DEFAULT_RTPS, or DEFAULT_STATIC). (Also see the

DCPSDefaultDiscovery property in Table 7-2)

DefaultTransportConfig=config
A user-defined string that refers to the instance

name of a [config] section. See Section 7.4 .

 7.3.2 Configuring Applications For DCPSInfoRepo
An OpenDDS DCPSInfoRepo is a service on a local or remote node used for participant

discovery. Configuring how participants should find DCPSInfoRepo is the purpose of this

section. Assume for example that the DCPSInfoRepo service is started on a host and port of

myhost.mydomain.com:12345. Applications can make their OpenDDS participants aware of

how to find this service through command line options or by reading a configuration file.

In our Getting Started example from 2.1.7, “Running the Example” the executables were

given a command line parameter to find the DCPSInfoRepo service like so:

publisher -DCPSInfoRepo file://repo.ior

This assumes that the DCPSInfoRepo has been started with the following syntax:

Windows:

%DDS_ROOT%\bin\DCPSInfoRepo -o repo.ior

Unix:

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

The DCPSInfoRepo service generates its location object information in this file and

participants need to read this file to ultimately connect. The use of file based IORs to find a

discovery service, however, is not practical in most production environments, so

applications instead can use a command line option like the following to simply point to the

host and port where the DCPSInfoRepo is running.

publisher -DCPSInfoRepo myhost.mydomain.com:12345

The above assumes that the DCPSInfoRepo has been started on a host

(myhost.mydomain.com) as follows:

Windows:

%DDS_ROOT%\bin\DCPSInfoRepo -ORBListenEndpoints iiop://:12345

1 0 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

Unix:

$DDS_ROOT/bin/DCPSInfoRepo -ORBListenEndpoints iiop://:12345

If an application needs to use a configuration file for other settings, it would become more

convenient to place discovery content in the file and reduce command line complexity and

clutter. The use of a configuration file also introduces the opportunity for multiple

application processes to share common OpenDDS configuration. The above example can

easily be moved to the [common] section of a configuration file (assume a file of pub.ini):

[common]
DCPSInfoRepo=myhost.mydomain.com:12345

The command line to start our executable would now change to the following:

publisher -DCSPConfigFile pub.ini

Reinforcing our example from the discussion of domains in section , a configuration file can

specify domains with discovery configuration assigned to those domains. In this case the

RepositoryIor property is used to take the same information that would be supplied on a

command line to point to a running DCPSInfoRepo service. Two domains are configured

here:

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=myhost.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

The DiscoveryConfig property under [domain/1] instructs all participants in domain 1 to

use the configuration defined in an instance called DiscoveryConfig1. In the above, this is

mapped to a [repository] section that gives the RepositoryIor value of

myhost.mydomain.com:12345.

Finally, when configuring a DCPSInfoRepo the DiscoveryConfig property under a domain

instance entry can also contain the value of DEFAULT_REPO which instructs a participant

using this instance to use the definition of the property DCPSInfoRepo wherever it has been

supplied. Consider the following configuration file as an example:

[common]
DCPSInfoRepo=localhost:12345

[domain/1]
DiscoveryConfig=DiscoveryConfig1

1 0 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

[repository/DiscoveryConfig1]
RepositoryIor=myhost.mydomain.com:12345

[domain/2]
DiscoveryConfig=DEFAULT_REPO

In this case any participant in domain 2 would be instructed to refer to the discovery

property of DCPSInfoRepo, which is defined in the [common] section of our example. If the

DCPSInfoRepo value is not supplied in the [common] section, it could alternatively be

supplied as a parameter to the command line like so:

publisher -DCPSInfoRepo localhost:12345 -DCPSConfigFile pub.ini

This sets the value of DCPSInfoRepo such that if participants reading the configuration file

pub.ini encounters DEFAULT_REPO, there is a value for it. If DCPSInfoRepo is not defined in a

configuration file or on the command line, then the OpenDDS default value for

DCPSInfoRepo is file://repo.ior. As mentioned prior, this is not likely to be the most

useful in production environments and should lead to setting the value of DCPSInfoRepo by

one of the means described in this section.

 7.3.2.1 Configuring for Multiple DCPSInfoRepo Instances
The DDS entities in a single OpenDDS process can be associated with multiple DCPS

information repositories (DCPSInfoRepo).

The repository information and domain associations can be configured using a configuration

file, or via application API. Internal defaults, command line arguments, and configuration

file options will work as-is for existing applications that do not want to use multiple

DCPSInfoRepo associations.

Refer to Figure 7-1 as an example of a process that uses multiple DCPSInfoRepo

repositories. Processes A and B are typical application processes that have been configured

to communicate with one another and discover one another in InfoRepo_1. This is a simple

use of basic discovery. However, an additional layer of context has been applied with the

use of a specified domain (Domain 1). DDS entities (data readers/data writers) are restricted

to communicate to other entities within that same domain. This provides a useful method of

separating traffic when needed by an application. Processes C and D are configured the

same way, but operate in Domain 2 and use InfoRepo_2. The challenge comes when you

have an application process that needs to use multiple domains and have separate discovery

services. This is Process E in our example. It contains two subscribers, one subscribing to

publications from InfoRepo_1 and the other subscribing to publications in InfoRepo_2.

What allows this configuration to work can be found in the configE.ini file.

1 0 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

We will now look at the configuration file (referred to as configE.ini) to demonstrate how

Process E can communicate to both domains and separate DCPSInfoRepo services. For this

example we will only show the discovery aspects of the configuration and not show

transport content.

configE.ini

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[repository/DiscoveryConfig1]
RepositoryIor=host1.mydomain.com:12345

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[repository/DiscoveryConfig2]
RepositoryIor=host2.mydomain.com:12345

When Process E in Figure 7-1 reads in the above configuration it finds the occurrence of

multiple domain sections. As described in Section each domain has an instance integer and

a property of DiscoveryConfig defined.

For the first domain ([domain/1]), the DiscoveryConfig property is supplied with the user-

defined name of DiscoveryConfig1 value. This property causes the OpenDDS

implementation to find a section title of either repository or rtps_discovery and an

instance name of DiscoveryConfig1. In our example, a [repository/DiscoveryConfig1]

section title is found and this becomes the discovery configuration for domain instance

[domain/1] (integer value 1). The section found now tells us that the address of the

1 0 5 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 7-1 Multiple DCPSInfoRepo Configuration

 Run-time Configuration

DCPSInfoRepo that this domain should use can be found by using the RepositoryIor

property value. In particular it is host1.mydomain.com and port 12345. The values of the

RepositoryIor can be a full CORBA IOR or a simple host:port string.

A second domain section title [domain/2] is found in this configuration file along with it’s

corresponding repository section [repository/DiscoveryConfig2] that represents the

configuration for the second domain of interest and the InfoRepo_2 repository. There may

be any number of repository or domain sections within a single configuration file.

Domains not explicitly configured are automatically associated with the default discovery

configuration.

Individual DCPSInfoRepos can be associated with multiple domains, however domains

cannot be shared between multiple DCPSInfoRepos.

Here are the valid properties for a [repository] section.

Table 7-4 Multiple repository configuration sections

Option Description

RepositoryIor=ior Repository IOR or host:port.

RepositoryKey=key
Unique key value for the repository. (Deprecated.

Provided for backward compatibility)

 7.3.3 Configuring For DDSI-RTPS Discovery
The OMG DDSI-RTPS specification gives the following simple description that forms the

basis for the discovery approach used by OpenDDS and the two different protocols used to

accomplish the discovery operations. The excerpt from the OMG DDSI-RTPS specification

Section 8.5.1 is as follows:

“The RTPS specification splits up the discovery protocol into two independent protocols:

1. Participant Discovery Protocol

2. Endpoint Discovery Protocol

A Participant Discovery Protocol (PDP) specifies how Participants discover each other in the

network. Once two Participants have discovered each other, they exchange information on the

Endpoints they contain using an Endpoint Discovery Protocol (EDP). Apart from this causality

relationship, both protocols can be considered independent.”

The configuration options discussed in this section allow a user to specify property values to

change the behavior of the Simple Participant Discovery Protocol (SPDP) and/or the Simple

Endpoint Discovery Protocol (SEDP) default settings.

1 0 6 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

Note

 7.3 Discovery Configuration

DDSI-RTPS can be configured for a single domain or for multiple domains as was done in

Section 7.3.2.1.

A simple configuration is achieved by specifying a property in the [common] section of our

example configuration file.

configE.ini (for RTPS)
[common]
DCPSDefaultDiscovery=DEFAULT_RTPS

All default values for DDSI-RTPS discovery are adopted in this form. A variant of this same

basic configuration is to specify a section to hold more specific parameters of RTPS

discovery. The following example uses the [common] section to point to an instance of an

[rtps_discovery] section followed by an instance name of TheRTPSConfig which is

supplied by the user.

[common]
DCPSDefaultDiscovery=TheRTPSConfig

[rtps_discovery/TheRTPSConfig]
ResendPeriod=5

The instance [rtps_discovery/TheRTPSConfig] is now the location where properties that

vary the default DDSI-RTPS settings get specified. In our example the ResendPeriod=5

entry sets the number of seconds between periodic announcements of available data

readers / data writers and to detect the presence of other data readers / data writers on the

network. This would override the default of 30 seconds.

If your OpenDDS deployment uses multiple domains, the following configuration approach

combines the use of the [domain] section title with [rtps_discovery] to allow a user to

specify particular settings by domain. It might look like this:

configE.ini
[common]
DCPSDebugLevel=0

[domain/1]
DiscoveryConfig=DiscoveryConfig1

[rtps_discovery/DiscoveryConfig1]
ResendPeriod=5

[domain/2]
DiscoveryConfig=DiscoveryConfig2

[rtps_discovery/DiscoveryConfig2]
ResendPeriod=5
SedpMulticast=0

1 0 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Some important implementation notes regarding DDSI-RTPS discovery in OpenDDS are as

follows:

1) Domain IDs should be between 0 and 231 (inclusive) due to the way UDP ports are

assigned to domain IDs. In each OpenDDS process, up to 120 domain participants are

supported in each domain.

2) OpenDDS's multicast transport (7.4.5.4) does not work with RTPS Discovery due to the

way GUIDs are assigned (a warning will be issued if this is attempted).

The OMG DDSI-RTPS specification details several properties that can be adjusted from their

defaults that influence the behavior of DDSI-RTPS discovery. Those properties, along with

options specific to OpenDDS’s RTPS Discovery implementation, are listed in Table 7-5.

Table 7-5 RTPS Discovery Configuration Options

Option Description Default

ResendPeriod=sec

The number of seconds that a process waits

between the announcement of participants

(see section 8.5.3 in the OMG DDSI-RTPS

specification for details).

30

MinResendDelay=msec
The minimum time in milliseconds between

participant announcements.
100

QuickResendRatio=frac
Tuning parameter that configures local SPDP

resends as a fraction of the resend period.
0.1

LeaseDuration=sec

Sent as part of the participant announcement.

It tells the peer participants that if they don’t

hear from this participant for the specified

duration, then this participant can be

considered “not alive.”

300

LeaseExtension=sec

Extends the lease of discovered participants by

the set amount of seconds. Useful on spotty

connections to reduce load on the RtpsRelay.

0

PB=port

Port Base number. This number sets the

starting point for deriving port numbers used

for Simple Endpoint Discovery Protocol

(SEDP). This property is used in conjunction

with DG, PG, D0 (or DX), and D1 to construct the

necessary Endpoints for RTPS discovery

communication. (see section 9.6.1.1 in the

OMG DDSI-RTPS specification in how these

Endpoints are constructed)

7400

1 0 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

Option Description Default

DG=n

An integer value representing the Domain

Gain. This is a multiplier that assists in

formulating Multicast or Unicast ports for

RTPS.

250

PG=n

An integer that assists in configuring SPDP

Unicast ports and serves as an offset multiplier

as participants are assigned addresses using

the formula:

PB + DG * domainId + d1 + PG *

participantId

(see section 9.6.1.1 in the OMG DDSI-RTPS

specification in how these Endpoints are

constructed)

2

D0=n

An integer value that assists in providing an

offset for calculating an assignable port in

SPDP Multicast configurations. The formula

used is:

PB + DG * domainId + d0

(see section 9.6.1.1 in the OMG DDSI-RTPS

specification in how these Endpoints are

constructed)

0

D1=n

An integer value that assists in providing an

offset for calculating an assignable port in

SPDP Unicast configurations. The formula used

is:

PB + DG * domainId + d1 + PG *

participantId

(see section 9.6.1.1 in the OMG DDSI-RTPS

specification in how these Endpoints are

constructed)

10

SedpMaxMessageSize=n

Set the maximum SEDP message size. The

default is the maximum UDP message size. See

max_message_size in table 7-17.

65466

SedpMulticast=[0|1]

A boolean value (0 or 1) that determines

whether Multicast is used for the SEDP traffic.

When set to 1, Multicast is used. When set to

zero (0) Unicast for SEDP is used.

1

1 0 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description Default

SedpLocalAddress=addr:[port]

Configure the transport instance created and

used by SEDP to bind to the specified local

address and port. In order to leave the port

unspecified, it can be omitted from the setting

but the trailing : must be present.

System default

address

SpdpLocalAddress=addr[:port]
Address of a local interface, which will be used

by SPDP to bind to that specific interface.

DCPSDefaultAd

dress, or

IPADDR_ANY

SedpAdvertisedLocalAddress= addr:

[port]

Sets the address advertised by SEDP. Typically

used when the participant is behind a firewall

or NAT. In order to leave the port unspecified,

it can be omitted from the setting but the

trailing : must be present.

SedpSendDelay=msec
Time in milliseconds for a built-in (SEDP)

Writer to wait before sending data.
10

SedpHeartbeatPeriod=msec
Time in milliseconds for a built-in (SEDP)

Writer to announce the availability of data.
200

SedpNakResponseDelay=msec

Time in milliseconds for a built-in (SEDP)

Writer to delay the response to a negative

acknowledgment.

100

DX=n

An integer value that assists in providing an

offset for calculating a port in SEDP Multicast

configurations. The formula used is:

PB + DG * domainId + dx

This is only valid when SedpMulticast=1. This

is an OpenDDS extension and not part of the

OMG DDSI-RTPS specification.

2

SpdpSendAddrs=

[host:port],[host:port]...

A list (comma or whitespace separated) of

host:port pairs used as destinations for SPDP

content. This can be a combination of Unicast

and Multicast addresses.

MaxSpdpSequenceMsgResetChecks=n

Remove a discovered participant after this

number of SPDP messages with earlier

sequence numbers.

3

PeriodicDirectedSpdp=[0|1]

A boolean value that determines whether

directed SPDP messages are sent to all

participants once every resend period. This

setting should be enabled for participants that

cannot use multicast to send SPDP

announcements, e.g., an RtpsRelay.

0

1 1 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

Option Description Default

UndirectedSpdp=[0|1]

A boolean value that determines whether

undirected SPDP messages are sent. This

setting should be disabled for participants that

cannot use multicast to send SPDP

announcements, e.g., an RtpsRelay.

1

InteropMulticastOverride=

group_address

A network address specifying the multicast

group to be used for SPDP discovery. This

overrides the interoperability group of the

specification. It can be used, for example, to

specify use of a routed group address to

provide a larger discovery scope.

239.255.0.1

TTL=n

The value of the Time-To-Live (TTL) field of

multicast datagrams sent as part of discovery.

This value specifies the number of hops the

datagram will traverse before being discarded

by the network. The default value of 1 means

that all data is restricted to the local network

subnet.

1

MulticastInterface=iface

Specifies the network interface to be used by

this discovery instance. This uses a platform-

specific format that identifies the network

interface. On Linux systems this would be

something like eth0.

If this value is not configured, the Common

Configuration value DCPSDefaultAddress is

used to set the multicast interface.

The system

default

interface is

used

GuidInterface=iface

Specifies the network interface to use when

determining which local MAC address should

appear in a GUID generated by this node.

The system /

ACE library

default is used

SpdpRtpsRelayAddress=host:port
Specifies the address of the RtpsRelay for

SPDP messages. See section 15.2.

SpdpRtpsRelaySendPeriod=period

Specifies the interval between SPDP

announcements sent to the RtpsRelay. See

section 15.2.

30 seconds

SedpRtpsRelayAddress=host:port
Specifies the address of the RtpsRelay for

SEDP messages. See section 15.2.

RtpsRelayOnly=[0|1]
Only send RTPS message to the RtpsRelay (for

debugging). See section 15.2.
0

1 1 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description Default

UseRtpsRelay=[0|1]

Send messages to the RtpsRelay. Messages

will only be sent if SpdpRtpsRelayAddress

and/or SedpRtpsRelayAddress is set. See

section 15.2.

0

SpdpStunServerAddress=host:port
Specifies the address of the STUN server to

use for SPDP when using ICE. See section 15.3

SedpStunServerAddress=host:port

Specifies the address of the STUN server to

use for SEDP when using ICE. See section

15.3.

UseIce=[0|1]
Enable or disable ICE for both SPDP and

SEDP. See section 15.3.
0

IceTa=msec
Minimum interval between ICE sends. See

section 15.3.
50

IceConnectivityCheckTTL=sec
Maximum duration of connectivity check. See

section 15.3.
300

IceChecklistPeriod=sec

Attempt to cycle through all of the connectivity

checks for a candidate in this amount of time.

See section 15.3.

10

IceIndicationPeriod=sec
Send STUN indications to peers to maintain

NAT bindings at this period. See section 15.3.
15

IceNominatedTTL=sec

Forget a valid candidate if an indication is not

received in this amount of time. See section

15.3.

300

IceServerReflexiveAddressPeriod

=sec

Send a messages to the STUN server at this

period. See section 15.3.
30

IceServerReflexiveIndicationCou

nt=integer

Send this many indications before sending a

new binding request to the STUN server. See

section 15.3.

10

IceDeferredTriggeredCheckTTL=se

c

Purge deferred checks after this amount of

time. See section 15.3.
300

IceChangePasswordPeriod=sec
Change the ICE password after this amount of

time. See section 15.3.
300

MaxAuthTime=sec
Set the maximum time for authentication with

DDS Security.
300

AuthResendPeriod=sec

Resend authentication messages after this

amount of time. It is a floating point value, so

fractions of a second can be specified.

1

SecureParticipantUserData=[0|1]

If DDS Security is enabled, the Participant’s

USER_DATA QoS is omitted from unsecured

discovery messages.

0

1 1 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

Option Description Default

UseXTypes=[

 no|0|

 minimal|1|

 complete|2

]

Enables discovery extensions from the XTypes

specification. Participants exchange top-level

type information in endpoint announcements

and extended type information using the Type

Lookup Service.

minimal or 1 uses MinimalTypeObject and

complete or 2 uses CompleteTypeObject if

available. See 16.7.1 for more information on

CompleteTypeObject and its use in the

dynamic binding.

minimal

TypeLookupServiceReplyTimeout=m

sec

If a request is sent to a peer’s Type Lookup

Service (see UseXTypes above), wait up to this

duration (in milliseconds) for a reply.

5000

(5 seconds)

SedpResponsiveMode=[0|1]
Causes the built-in SEDP endpoints to send

additional messages which may reduce latency.
0

SedpPassiveConnectDuration=msec
Sets the duration that a passive endpoint will

wait for a connection.

60000

(1 minute)

SendBufferSize=bytes

Socket send buffer size for both SPDP and

SEDP. A value of zero indicates that the

system default value is used.

0

RecvBufferSize=bytes

Socket receive buffer size for both SPDP and

SEDP. A value of zero indicates that the

system default value is used.

0

MaxParticipantsInAuthentication

=n

If DDS Security is enabled, this option (when

set to a positive number) limits the number of

peer participants that can be concurrently in

the process of authenticating – that is, not yet

completed authentication.

0 (unlimited)

SedpReceivePreallocatedMessageB

locks=n

Configure the

receive_preallocated_message_blocks attribute

of SEDP’s transport. See 7.4.5.1.

0 (use default)

SedpReceivePreallocatedDataBloc

ks=n

Configure the

receive_preallocated_data_blocks attribute of

SEDP’s transport. See 7.4.5.1.

0 (use default)

1 1 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description Default

CheckSourceIp=[0|1]

Incoming participant announcements (SPDP)

are checked to verify that their source IP

address matches one of:

• An entry in the metatraffic locator list

• The configured RtpsRelay (if any)

• An ICE AgentInfo parameter

Announcements that don’t match any of these

are dropped if this check is enabled.

1 (enabled)

If the environment variable OPENDDS_RTPS_DEFAULT_D0 is set, its value is used as the D0

default value.

 7.3.3.1 Additional DDSI-RTPS Discovery Features
The DDSI_RTPS discovery implementation creates and manages a transport instance –

specifically an object of class RtpsUdpInst. In order for applications to access this object

and enable advanced features (see Additional RTPS_UDP Features on page 136), the

RtpsDiscovery class provides the method sedp_transport_inst(domainId,

participant).

 7.3.4 Configuring For Static Discovery
Static discovery may be used when a DDS domain has a fixed number of processes and data

readers/writers that are all known a priori. Data readers and writers are collectively known

as endpoints. Using only the configuration file, the static discovery mechanism must be

able to determine a network address and the QoS settings for each endpoint. The static

discovery mechanism uses this information to determine all potential associations between

readers and writers. A domain participant learns about the existence of an endpoint

through hints supplied by the underlying transport.

Currently, static discovery can only be used for endpoints using the RTPS UDP transport.

Static discovery introduces the following configuration file sections: [topic/*],

[datawriterqos/*], [datareaderqos/*], [publisherqos/*], [subscriberqos/*], and

[endpoint/*]. The [topic/*] (Table 7-6) section is used to introduce a topic. The

[datawriterqos/*] (Table 7-7), [datareaderqos/*] (Table 7-8), [publisherqos/*] (Table

7-9), and [subscriberqos/*] (Table 7-10) sections are used to describe a QoS of the

associated type. The [endpoint/*] (Table 7-11) section describes a data reader or writer.

1 1 4 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 7.3 Discovery Configuration

Data reader and writer objects must be identified by the user so that the static discovery

mechanism can associate them with the correct [endpoint/*] section in the configuration

file. This is done by setting the user_data of the DomainParticipantQos to an octet

sequence of length 6. The representation of this octet sequence occurs in the participant

value of an [endpoint/*] section as a string with two hexadecimal digits per octet.

Similarly, the user_data of the DataReaderQos or DataWriterQos must be set to an octet

sequence of length 3 corresponding to the entity value in the [endpoint/*] section. For

example, suppose the configuration file contains the following:

[topic/MyTopic]
type_name=TestMsg::TestMsg

[endpoint/MyReader]
type=reader
topic=MyTopic
config=MyConfig
domain=34
participant=0123456789ab
entity=cdef01

[config/MyConfig]
transports=MyTransport

[transport/MyTransport]
transport_type=rtps_udp
use_multicast=0
local_address=1.2.3.4:30000

The corresponding code to configure the DomainParticipantQos is:

DDS::DomainParticipantQos dp_qos;
domainParticipantFactory->get_default_participant_qos(dp_qos);
dp_qos.user_data.value.length(6);
dp_qos.user_data.value[0] = 0x01;
dp_qos.user_data.value[1] = 0x23;
dp_qos.user_data.value[2] = 0x45;
dp_qos.user_data.value[3] = 0x67;
dp_qos.user_data.value[4] = 0x89;
dp_qos.user_data.value[5] = 0xab;

The code to configure the DataReaderQos is similar:

DDS::DataReaderQos qos;
subscriber->get_default_datareader_qos(qos);
qos.user_data.value.length(3);
qos.user_data.value[0] = 0xcd;
qos.user_data.value[1] = 0xef;
qos.user_data.value[2] = 0x01;

The domain id, which is 34 in the example, should be passed to the call to

create_participant.

In the example, the endpoint configuration for MyReader references MyConfig which in turn

references MyTransport. Transport configuration is described in Section 7.4 . The

important detail for static discovery is that at least one of the transports contains a known

network address (1.2.3.4:30000). An error will be issued if an address cannot be

1 1 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

determined for an endpoint. The static discovery implementation also checks that the QoS

of a data reader or data writer object matches the QoS specified in the configuration file.

Table 7-6 [topic/*] Configuration Options

Option Description Default

name=string The name of the topic.
Instance name

of section

type_name=string

Identifier which uniquely defines the sample type.

This is typically a CORBA interface repository type

name.

Required

Table 7-7 [datawriterqos/*] Configuration Options

Option Description Default

durability.kind=[

 VOLATILE|TRANSIENT_LOCAL]
See Section 3.2.5. See Table 3-5.

deadline.period.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.9 . See Table 3-5.

deadline.period.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.9 . See Table 3-5.

latency_budget.duration.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.15 . See Table 3-5.

latency_budget.duration.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.15 . See Table 3-5.

liveliness.kind=[

 AUTOMATIC|

 MANUAL_BY_TOPIC|

 MANUAL_BY_PARTICIPANT]

See Section 3.2.2 . See Table 3-5.

liveliness.lease_duration.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.2 . See Table 3-5.

liveliness.lease_duration.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.2 . See Table 3-5.

reliability.kind=[BEST_EFFORT|RELIABILE] See Section 3.2.3 . See Table 3-5.

reliability.max_blocking_time.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.3 . See Table 3-5.

reliability.max_blocking_time.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.3 . See Table 3-5.

destination_order.kind=[

 BY_SOURCE_TIMESTAMP|

 BY_RECEPTION_TIMESTAMP]

See Section 3.2.18 . See Table 3-5.

history.kind=[KEEP_LAST|KEEP_ALL] See Section 3.2.4 . See Table 3-5.

history.depth=numeric See Section 3.2.4 . See Table 3-5.

resource_limits.max_samples=numeric See Section 3.2.7 . See Table 3-5.

1 1 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

Option Description Default
resource_limits.max_instances=numeric See Section 3.2.7 . See Table 3-5.

resource_limits.max_samples_per_instance=

 numeric
See Section 3.2.7 . See Table 3-5.

transport_priority.value=numeric See Section 3.2.14 . See Table 3-5.

lifespan.duration.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.10 . See Table 3-5.

lifespan.duration.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.10 . See Table 3-5.

ownership.kind=[SHARED|EXCLUSIVE] See Section 3.2.22 . See Table 3-5.

ownership_strength.value=numeric See Section 3.2.23 . See Table 3-5.

Table 7-8 [datareaderqos/*] Configuration Options

Option Description Default

durability.kind=[

 VOLATILE|TRANSIENT_LOCAL]
See Section 3.2.5. See Table 3-6.

deadline.period.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.9 . See Table 3-6.

deadline.period.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.9 . See Table 3-6.

latency_budget.duration.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.15 . See Table 3-6.

latency_budget.duration.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.15 . See Table 3-6.

liveliness.kind=[

 AUTOMATIC|

 MANUAL_BY_TOPIC|

 MANUAL_BY_PARTICIPANT]

See Section 3.2.2 . See Table 3-6.

liveliness.lease_duration.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.2 . See Table 3-6.

liveliness.lease_duration.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.2 . See Table 3-6.

reliability.kind=[BEST_EFFORT|RELIABILE] See Section 3.2.3 . See Table 3-6.

reliability.max_blocking_time.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.3 . See Table 3-6.

reliability.max_blocking_time.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.3 . See Table 3-6.

destination_order.kind=[

 BY_SOURCE_TIMESTAMP|

 BY_RECEPTION_TIMESTAMP]

See Section 3.2.18 . See Table 3-6.

history.kind=[KEEP_LAST|KEEP_ALL] See Section 3.2.4 . See Table 3-6.

history.depth=numeric See Section 3.2.4 . See Table 3-6.

1 1 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description Default
resource_limits.max_samples=numeric See Section 3.2.7 . See Table 3-6.

resource_limits.max_instances=numeric See Section 3.2.7 . See Table 3-6.

resource_limits.max_samples_per_instance=

 numeric
See Section 3.2.7 . See Table 3-6.

time_based_filter.minimum_separation.sec=[

 numeric|DURATION_INFINITE_SEC]
See Section 3.2.21 . See Table 3-6.

time_based_filter.minimum_separation.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]
See Section 3.2.21 . See Table 3-6.

reader_data_lifecycle.

autopurge_nowriter_samples_delay.sec=[

 numeric|DURATION_INFINITE_SEC]

See Section 3.2.20 . See Table 3-6.

reader_data_lifecycle.

autopurge_nowriter_samples_delay.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]

See Section 3.2.20 . See Table 3-6.

reader_data_lifecycle.

autopurge_dispose_samples_delay.sec=[

 numeric|DURATION_INFINITE_SEC]

See Section 3.2.20 . See Table 3-6.

reader_data_lifecycle.

autopurge_dispose_samples_delay.nanosec=[

 numeric|DURATION_INFINITE_NANOSEC]

See Section 3.2.20 . See Table 3-6.

Table 7-9 [publisherqos/*] Configuration Options

Option Description Default

presentation.access_scope=[INSTANCE|TOPIC|GROUP] See Section 3.2.17 . See Table 3-3.

presentation.coherent_access=[true|false] See Section 3.2.17 . See Table 3-3.

presentation.ordered_access=[true|false] See Section 3.2.17 . See Table 3-3.

partition.name=name0,name1,... See Section 3.2.8 . See Table 3-3.

Table 7-10 [subscriberqos/*] Configuration Options

Option Description Default

presentation.access_scope=[INSTANCE|TOPIC|GROUP] See Section 3.2.17 . See Table 3-4.

presentation.coherent_access=[true|false] See Section 3.2.17 . See Table 3-4.

presentation.ordered_access=[true|false] See Section 3.2.17 . See Table 3-4.

partition.name=name0,name1,... See Section 3.2.8 . See Table 3-4.

Table 7-11 [endpoint/*] Configuration Options

Option Description Default

domain=numeric
Domain id for endpoint in range 0-231. Used to

form GUID of endpoint.
Required

1 1 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.3 Discovery Configuration

Option Description Default

participant=hexstring

String of 12 hexadecimal digits. Used to form GUID

of endpoint. All endpoints with the same

domain/participant combination should be in the

same process.

Required

entity=hexstring

String of 6 hexadecimal digits. Used to form GUID

of endpoint. The combination of

domain/participant/entity should be unique.

Required

type=[reader|writer]
Determines if the entity is a data reader or data

writer.
Required

topic=name Refers to a [topic/*] section. Required

datawriterqos=name Refers to a [datawriterqos/*] section. See Table 3-5.

datareaderqos=name Refers to a [datareaderqos/*] section. See Table 3-6.

publisherqos=name Refers to a [publisherqos/*] section. See Table 3-3.

subscriberqos=name Refers to a [subscriberqos/*] section. See Table 3-4.

config

Refers to a transport configuration in a [config/*]

section. This is used to determine a network

address for the endpoint.

 7.4 Transport Configuration
Beginning with OpenDDS 3.0, a new transport configuration design has been implemented.

The basic goals of this design were to:

• Allow simple deployments to ignore transport configuration and deploy using intelligent

defaults (with no transport code required in the publisher or subscriber).

• Enable flexible deployment of applications using only configuration files and command

line options.

• Allow deployments that mix transports within individual data writers and writers.

Publishers and subscribers negotiate the appropriate transport implementation to use

based on the details of the transport configuration, QoS settings, and network

reachability.

• Support a broader range of application deployments in complex networks.

• Support optimized transport development (such as collocated and shared memory

transports - note that these are not currently implemented).

• Integrate support for the RELIABILITY QoS policy with the underlying transport.

• Whenever possible, avoid dependence on the ACE Service Configurator and its

configuration files.

1 1 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Unfortunately, implementing these new capabilities involved breaking of backward

compatibility with OpenDDS transport configuration code and files from previous releases.

See $DDS_ROOT/docs/OpenDDS_3.0_Transition.txt for information on how to convert your

existing application to use the new transport configuration design.

 7.4.1 Overview

 7.4.1.1 Transport Concepts
This section provides an overview of the concepts involved in transport configuration and

how they interact.

Each data reader and writer uses a Transport Configuration consisting of an ordered set of

Transport Instances. Each Transport Instance specifies a Transport Implementation (i.e. tcp,

udp, multicast, shmem, or rtps_udp) and can customize the configuration parameters

defined by that transport. Transport Configurations and Transport Instances are managed

by the Transport Registry and can be created via configuration files or through

programming APIs.

Transport Configurations can be specified for Domain Participants, Publishers, Subscribers,

Data Writers, and Data Readers. When a Data Reader or Writer is enabled, it uses the most

specific configuration it can locate, either directly bound to it or accessible through its

parent entity. For example, if a Data Writer specifies a Transport Configuration, it always

uses it. If the Data Writer does not specify a configuration, it tries to use that of its

Publisher or Domain Participant in that order. If none of these entities have a transport

configuration specified, the Global Transport Configuration is obtained from the Transport

Registry. The Global Transport Configuration can be specified by the user via either

configuration file, command line option, or a member function call on the Transport

Registry. If not defined by the user, a default transport configuration is used which contains

all available transport implementations with their default configuration parameters. If you

don’t specifically load or link in any other transport implementations, OpenDDS uses the tcp

transport for all communication.

1 2 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.4 Transport Configuration

 7.4.1.2 How OpenDDS Selects a Transport
Currently, the behavior for OpenDDS is that Data Writers actively connect to Data Readers,

which are passively awaiting those connections. Data Readers “listen” for connections on

each of the Transport Instances that are defined in their Transport Configuration. Data

Writers use their Transport Instances to “connect” to those of the Data Readers. Because

the logical connections discussed here don’t correspond to the physical connections of the

transport, OpenDDS often refers to them as Data Links.

When a Data Writer tries to connect to a Data Reader, it first attempts to see if there is an

existing data link that it can use to communicate with that Data Reader. The Data Writer

iterates (in definition order) through each of its Transport Instances and looks for an

existing data link to the Transport Instances that the reader defined. If an existing data link

is found it is used for all subsequent communication between the Data Writer and Reader.

If no existing data link is found, the Data Writer attempts to connect using the different

Transport Instances in the order they are defined in its Transport Configuration. Any

Transport Instances not “matched” by the other side are skipped. For example, if the writer

specifies udp and tcp transport instances and the reader only specifies tcp, the udp

transport instance is ignored. Matching algorithms may also be affected by QoS parameters,

configuration of the instances, and other specifics of the transport implementation. The first

pair of Transport Instances that successfully “connect” results in a data link that is used for

all subsequent data sample publication.

 7.4.2 Configuration File Examples
The following examples explain the basic features of transport configuration via files and

describe some common use cases. These are followed by full reference documentation for

these features.

 7.4.2.1 Single Transport Configuration
The simplest way to provide a transport configuration for your application is to use the

OpenDDS configuration file. Here is a sample configuration file that might be used by an

application running on a computer with two network interfaces that only wants to

communicate using one of them:

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mytcp

[transport/mytcp]

1 2 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

transport_type=tcp
local_address=myhost

This file does the following (starting from the bottom up):

1) Defines a transport instance named mytcp with a transport type of tcp and the local

address specified as myhost, which is the host name corresponding to the network

interface we want to use.

2) Defines a transport configuration named myconfig that uses the transport instance

mytcp as its only transport.

3) Makes the transport configuration named myconfig the global transport configuration

for all entities in this process.

A process using this configuration file utilizes our customized transport configuration for all

Data Readers and Writers created by it (unless we specifically bind another configuration in

the code as described in 7.4.2.3).

 7.4.2.2 Using Mixed Transports
This example configures an application to primarily use multicast and to “fall back” to tcp

when it is unable to use multicast. Here is the configuration file:

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mymulticast,mytcp

[transport/mymulticast]
transport_type=multicast

[transport/mytcp]
transport_type=tcp

The transport configuration named myconfig now includes two transport instances,

mymulticast and mytcp. Neither of these transport instances specify any parameters

besides transport_type, so they use the default configuration of these transport

implementations. Users are free to use any of the transport-specific configuration

parameters that are listed in the following reference sections.

Assuming that all participating processes use this configuration file, the application

attempts to use multicast to initiate communication between data writers and readers. If the

initial multicast communication fails for any reason (possibly because an intervening router

is not passing multicast traffic) tcp is used to initiate the connection.

1 2 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.4 Transport Configuration

 7.4.2.3 Using Multiple Configurations
For many applications, one configuration is not equally applicable to all communication

within a given process. These applications must create multiple Transport Configurations

and then assign them to the different entities of the process.

For this example consider an application hosted on a computer with two network interfaces

that requires communication of some data over one interface and the remainder over the

other interface. Here is our configuration file:

[common]
DCPSGlobalTransportConfig=config_a

[config/config_a]
transports=tcp_a

[config/config_b]
transports=tcp_b

[transport/tcp_a]
transport_type=tcp
local_address=hosta

[transport/tcp_b]
transport_type=tcp
local_address=hostb

Assuming hosta and hostb are the host names assigned to the two network interfaces, we

now have separate configurations that can use tcp on the respective networks. The above

file sets the “A” side configuration as the default, meaning we must manually bind any

entities we want to use the other side to the “B” side configuration.

OpenDDS provides two mechanisms to assign configurations to entities:

• Via source code by attaching a configuration to an entity (reader, writer, publisher,

subscriber, or domain participant)

• Via configuration file by associating a configuration with a domain

Here is the source code mechanism (using a domain participant):

 DDS::DomainParticipant_var dp =
 dpf->create_participant(MY_DOMAIN,
 PARTICIPANT_QOS_DEFAULT,
 DDS::DomainParticipantListener::_nil(),
 OpenDDS::DCPS::DEFAULT_STATUS_MASK);

 OpenDDS::DCPS::TransportRegistry::instance()->bind_config("config_b", dp);

Any Data Writers or Readers owned by this Domain Participant should now use the “B” side

configuration.

1 2 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

When directly binding a configuration to a data writer or reader, the bind_config call must

occur before the reader or writer is enabled. This is not an issue when binding

configurations to Domain Participants, Publishers, or Subscribers. See Section 3.2.16 for

details on how to create entities that are not enabled.

 7.4.3 Transport Registry Example
OpenDDS allows developers to also define transport configurations and instances via C++

APIs. The OpenDDS::DCPS::TransportRegistry class is used to construct

OpenDDS::DCPS::TransportConfig and OpenDDS::DCPS::TransportInst objects.

The TransportConfig and TransportInst classes contain public data member

corresponding to the options defined below. This section contains the code equivalent of the

simple transport configuration file described in . First, we need to include the correct

header files:

#include <dds/DCPS/transport/framework/TransportRegistry.h>
#include <dds/DCPS/transport/framework/TransportConfig.h>
#include <dds/DCPS/transport/framework/TransportInst.h>
#include <dds/DCPS/transport/tcp/TcpInst.h>

using namespace OpenDDS::DCPS;

Next we create the transport configuration, create the transport instance, configure the

transport instance, and then add the instance to the configuration’s collection of instances:

 TransportConfig_rch cfg = TheTransportRegistry->create_config("myconfig");
 TransportInst_rch inst = TheTransportRegistry->create_inst("mytcp", // name
 "tcp"); // type

 // Must cast to TcpInst to get access to transport-specific options
 TcpInst_rch tcp_inst = dynamic_rchandle_cast<TcpInst>(inst);
 tcp_inst->local_address_str_ = "myhost";

 // Add the inst to the config
 cfg->instances_.push_back(inst);

Lastly, we can make our newly defined transport configuration the global transport

configuration:

 TheTransportRegistry->global_config(cfg);

This code should be executed before any Data Readers or Writers are enabled.

See the header files included above for the full list of public data members and member

functions that can be used. See the option descriptions in the following sections for a full

understanding of the semantics of these settings.

1 2 4 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 7.4 Transport Configuration

Stepping back and comparing this code to the original configuration file from , the

configuration file is much simpler than the corresponding C++ code and has the added

advantage of being modifiable at run-time. It is easy to see why we recommend that almost

all applications should use the configuration file mechanism for transport configuration.

 7.4.4 Transport Configuration Options
Transport Configurations are specified in the OpenDDS configuration file via sections with

the format of [config/<name>], where <name> is a unique name for that configuration

within that process. The following table summarizes the options when specifying a transport

configuration:

Table 7-12 Transport Configuration Options

Option Description Default

transports=inst1[,inst2][,...]

The ordered list of transport instance names that

this configuration will utilize. This field is required

for every transport configuration.

none

swap_bytes=[0|1]

A value of 0 causes DDS to serialize data in the

source machine's native endianness; a value of 1

causes DDS to serialize data in the opposite

endianness. The receiving side will adjust the data

for its endianness so there is no need to match

this option between machines. The purpose of this

option is to allow the developer to decide which

side will make the endian adjustment, if

necessary.

0

passive_connect_duration=msec

Timeout (milliseconds) for initial passive

connection establishment. A value of zero would

wait indefinitely (not recommended).

10000

(10 sec)

The passive_connect_duration option is typically set to a non-zero, positive integer.

Without a suitable connection timeout, the subscriber endpoint can potentially enter a state

of deadlock while waiting for the remote side to initiate a connection. Because there can be

multiple transport instances on both the publisher and subscriber side, this option needs to

be set to a high enough value to allow the publisher to iterate through the combinations

until it succeeds.

In addition to the user-defined configurations, OpenDDS can implicitly define two transport

configurations. The first is the default configuration and includes all transport

implementations that are linked into the process. If none are found, then only tcp is used.

Each of these transport instances uses the default configuration for that transport

1 2 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

implementation. This is the global transport configuration used when the user does not

define one.

The second implicit transport configuration is defined whenever an OpenDDS configuration

file is used. It is given the same name as the file being read and includes all the transport

instances defined in that file, in the alphabetical order of their names. The user can most

easily utilize this configuration by specifying the

DCPSGlobalTransportConfiguration=$file option in the same file. The $file value always

binds to the implicit file configuration of the current file.

 7.4.5 Transport Instance Options
Transport Instances are specified in the OpenDDS configuration file via sections with the

format of [transport/<name>], where <name> is a unique name for that instance within that

process. Each Transport Instance must specify the transport_type option with a valid

transport implementation type. The following sections list the other options that can be

specified, starting with those options common to all transport types and following with those

specific to each transport type.

When using dynamic libraries, the OpenDDS transport libraries are dynamically loaded

whenever an instance of that type is defined in a configuration file. When using custom

transport implementations or static linking, the application developer is responsible for

ensuring that the transport implementation code is linked with their executables.

 7.4.5.1 Configuration Options Common to All Transports
The following table summarizes the transport configuration options that are common to all

transports:

Table 7-13 Common Transport Configuration Options

Option Description Default

transport_type=transport

Type of the transport; the list of available

transports can be extended programmatically via

the transport framework. tcp, udp, multicast,

shmem, and rtps_udp are included with OpenDDS.

none

queue_messages_per_pool=n

When backpressure is detected, messages to be

sent are queued. When the message queue must

grow, it grows by this number.

10

1 2 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.4 Transport Configuration

Option Description Default

queue_initial_pools=n

The initial number of pools for the backpressure

queue. The default settings of the two

backpressure queue values preallocate space for

50 messages (5 pools of 10 messages).

5

max_packet_size=n

The maximum size of a transport packet, including

its transport header, sample header, and sample

data.

2147481599

max_samples_per_packet=n
Maximum number of samples in a transport

packet.
10

optimum_packet_size=n

Transport packets greater than this size will be

sent over the wire even if there are still queued

samples to be sent. This value may impact

performance depending on your network

configuration and application nature.

4096 (4 KiB)

thread_per_connection= [0|1]
Enable or disable the thread per connection send

strategy. By default, this option is disabled.
0

datalink_release_delay=msec

The datalink_release_delay is the delay (in

milliseconds) for datalink release after no

associations. Increasing this value may reduce the

overhead of re-establishment when reader/writer

associations are added and removed frequently.

10000

(10 sec)

receive_preallocated_message_

blocks=n

Set to a positive number to override the number of

message blocks that the allocator reserves

memory for eagerly (on startup).

0 (use

default)

receive_preallocated_data_blo

cks=n

Set to a positive number to override the number of

data blocks that the allocator reserves memory for

eagerly (on startup).

0 (use

default)

Enabling the thread_per_connection option will increase performance when writing to

multiple data readers on different process as long as the overhead of thread context

switching does not outweigh the benefits of parallel writes. This balance of network

performance to context switching overhead is best determined by experimenting. If a

machine has multiple network cards, it may improve performance by creating a transport

for each network card.

 7.4.5.2 TCP/IP Transport Configuration Options
There are a number of configurable options for the tcp transport. A properly configured

transport provides added resilience to underlying stack disturbances. Almost all of the

options available to customize the connection and reconnection strategies have reasonable

defaults, but ultimately these values should to be chosen based upon a careful study of the

1 2 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

quality of the network and the desired QoS in the specific DDS application and target

environment.

The local_address option is used by the peer to establish a connection. By default, the TCP

transport selects an ephemeral port number on the NIC with the FQDN (fully qualified

domain name) resolved. Therefore, you may wish to explicitly set the address if you have

multiple NICs or if you wish to specify the port number. When you configure inter-host

communication, the local_address can not be localhost and should be configured with an

externally visible address (i.e. 192.168.0.2), or you can leave it unspecified in which case

the FQDN and an ephemeral port will be used.

FQDN resolution is dependent upon system configuration. In the absence of a FQDN (e.g.

example.objectcomputing.com), OpenDDS will use any discovered short names (e.g.

example). If that fails, it will use the name resolved from the loopback address (e.g.

localhost).

OpenDDS IPv6 support requires that the underlying ACE/TAO components be built with

IPv6 support enabled. The local_address needs to be an IPv6 decimal address or a FQDN

with port number. The FQDN must be resolvable to an IPv6 address.

The tcp transport exists as an independent library and needs to be linked in order to use it.

When using a dynamically-linked build, OpenDDS automatically loads the transport library

whenever it is referenced in a configuration file or as the default transport when no other

transports are specified.

When the tcp library is built statically, your application must link directly against the

library. To do this, your application must first include the proper header for service

initialization: <dds/DCPS/transport/tcp/Tcp.h>.

You can also configure the publisher and subscriber transport implementations

programatically, as described in 7.4.3. Configuring subscribers and publishers should be

identical, but different addresses/ports should be assigned to each Transport Instance.

The following table summarizes the transport configuration options that are unique to the

tcp transport:

Table 7-14 TCP/IP Configuration Options

Option Description Default

active_conn_timeout_period=msec

The time period (milliseconds) for the active
connection side to wait for the connection to be
established. If not connected within this period then
the on_publication_lost() callbacks will be called.

5000
(5 sec)

1 2 8 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 7.4 Transport Configuration

Option Description Default

conn_retry_attempts=n

Number of reconnect attempts before giving up and

calling the on_publication_lost() and

on_subscription_lost() callbacks.

3

conn_retry_initial_delay=msec

Initial delay (milliseconds) for reconnect attempt. As

soon as a lost connection is detected, a reconnect is

attempted. If this reconnect fails, a second attempt

is made after this specified delay.

500

conn_retry_backoff_multiplier=n

The backoff multiplier for reconnection tries. After

the initial delay described above, subsequent delays

are determined by the product of this multiplier and

the previous delay. For example, with a

conn_retry_initial_delay of 500 and a

conn_retry_backoff_multiplier of 1.5, the second

reconnect attempt will be 0.5 seconds after the first

retry connect fails; the third attempt will be 0.75

seconds after the second retry connect fails; the

fourth attempt will be 1.125 seconds after the third

retry connect fails.

2.0

enable_nagle_algorithm=[0|1]

Enable or disable the Nagle’s algorithm. By default,

it is disabled.

Enabling the Nagle’s algorithm may increase

throughput at the expense of increased latency.

0

local_address=host:port

Hostname and port of the connection acceptor. The

default value is the FQDN and port 0, which means

the OS will choose the port. If only the host is

specified and the port number is omitted, the ‘:’ is

still required on the host specifier.

fqdn:0

max_output_pause_period=msec

Maximum period (milliseconds) of not being able to

send queued messages. If there are samples queued

and no output for longer than this period then the

connection will be closed and on_*_lost() callbacks

will be called. The default value of zero means that

this check is not made.

0

passive_reconnect_duration=msec

The time period (milliseconds) for the passive

connection side to wait for the connection to be

reconnected. If not reconnected within this period

then the on_*_lost() callbacks will be called.

2000

(2 sec)

pub_address=host:port

Override the address sent to peers with the

configured string. This can be used for firewall

traversal and other advanced network

configurations.

1 2 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

 TCP/IP Reconnection Options

When a TCP/IP connection gets closed OpenDDS attempts to reconnect. The reconnection

process is (a successful reconnect ends this sequence):

• Upon detecting a lost connection immediately attempt reconnect.

• If that fails, then wait conn_retry_initial_delay milliseconds and attempt reconnect.

• While we have not tried more than conn_retry_attempts, wait (previous wait time *

conn_retry_backoff_multiplier) milliseconds and attempt to reconnect.

 7.4.5.3 UDP/IP Transport Configuration Options
The udp transport is a bare bones transport that supports best-effort delivery only. Like tcp,

local_address, it supports both IPv4 and IPv6 addresses.

udp exists as an independent library and therefore needs to be linked and configured like

other transport libraries. When using a dynamic library build, OpenDDS automatically loads

the library when it is referenced in a configuration file. When the udp library is built

statically, your application must link directly against the library. Additionally, your

application must also include the proper header for service initialization:

<dds/DCPS/transport/udp/Udp.h>.

The following table summarizes the transport configuration options that are unique to the

udp transport:

Table 7-15 UDP/IP Configuration Options

Option Description Default

local_address=host:port

Hostname and port of the listening

socket. Defaults to a value picked

by the underlying OS. The port

can be omitted, in which case the

value should end in “:”.

fqdn:0

send_buffer_size=n
Total send buffer size in bytes for

UDP payload.

Platform value of

ACE_DEFAULT_MAX_SOCKET_BUFSIZ

rcv_buffer_size=n
Total receive buffer size in bytes

for UDP payload.

Platform value of

ACE_DEFAULT_MAX_SOCKET_BUFSIZ

 7.4.5.4 IP Multicast Transport Configuration Options
The multicast transport provides unified support for best-effort and reliable delivery based

on a transport configuration parameter.

1 3 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.4 Transport Configuration

Best-effort delivery imposes the least amount of overhead as data is exchanged between

peers, however it does not provide any guarantee of delivery. Data may be lost due to

unresponsive or unreachable peers or received in duplicate.

Reliable delivery provides for guaranteed delivery of data to associated peers with no

duplication at the cost of additional processing and bandwidth. Reliable delivery is achieved

through two primary mechanisms: 2-way peer handshaking and negative acknowledgment

of missing data. Each of these mechanisms are bounded to ensure deterministic behavior

and is configurable to ensure the broadest applicability possible for user environments.

multicast supports a number of configuration options:

The default_to_ipv6 and port_offset options affect how default multicast group

addresses are selected. If default_to_ipv6 is set to “1” (enabled), then the default IPv6

address will be used ([FF01::80]). The port_offset option determines the default port

used when the group address is not set and defaults to 49152.

The group_address option may be used to manually define a multicast group to join to

exchange data. Both IPv4 and IPv6 addresses are supported. As with tcp, OpenDDS IPv6

support requires that the underlying ACE/TAO components be built with IPv6 support

enabled.

On hosts with multiple network interfaces, it may be necessary to specify that the multicast

group should be joined on a specific interface. The option local_address can be set to the

IP address of the local interface that will receive multicast traffic.

If reliable delivery is desired, the reliable option may be specified (the default). The

remainder of configuration options affect the reliability mechanisms used by the multicast

transport:

The syn_backoff, syn_interval, and syn_timeout configuration options affect the

handshaking mechanism. syn_backoff is the exponential base used when calculating the

backoff delay between retries. The syn_interval option defines the minimum number of

milliseconds to wait before retrying a handshake. The syn_timeout defines the maximum

number of milliseconds to wait before giving up on the handshake.

Given the values of syn_backoff and syn_interval, it is possible to calculate the delays

between handshake attempts (bounded by syn_timeout):

 delay = syn_interval * syn_backoff ^ number_of_retries

For example, if the default configuration options are assumed, the delays between

handshake attempts would be: 0, 250, 1000, 2000, 4000, and 8000 milliseconds

respectively.

1 3 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

The nak_depth, nak_interval, and nak_timeout configuration options affect the Negative

Acknowledgment mechanism. nak_depth determines the maximum number of datagrams

retained by the transport to service incoming repair requests. The nak_interval

configuration option defines the minimum number of milliseconds to wait between repair

requests. This interval is randomized to prevent potential collisions between similarly

associated peers. The maximum delay between repair requests is bounded to double the

minimum value.

The nak_timeout configuration option defines the maximum amount of time to wait on a

repair request before giving up.

The nak_delay_intervals configuration option defines the number of intervals between

naks after the initial nak.

The nak_max configuration option limits the maximum number of times a missing sample

will be nak'ed. Use this option so that naks will be not be sent repeatedly for unrecoverable

packets before nak_timeout.

Currently, there are a couple of requirements above and beyond those already mandated by

the ETF when using this transport:

• At most, one DDS domain may be used per multicast group;

• A given participant may only have a single multicast transport attached per multicast

group; if you wish to send and receive samples on the same multicast group in the same

process, independent participants must be used.

multicast exists as an independent library and therefore needs to be linked and configured

like other transport libraries. When using a dynamic library build, OpenDDS automatically

loads the library when it is referenced in a configuration file. When the multicast library is

built statically, your application must link directly against the library. Additionally, your

application must also include the proper header for service initialization:

<dds/DCPS/transport/multicast/Multicast.h>.

The following table summarizes the transport configuration options that are unique to the

multicast transport:

Table 7-16 IP Multicast Configuration Options

Option Description Default

default_to_ipv6=[0|1]
Enables IPv6 default group address selection.

By default, this option is disabled.
0

group_address=host:port The multicast group to join to send/receive data.
224.0.0.128:<port>,

[FF01::80]:<port>

1 3 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.4 Transport Configuration

Option Description Default

local_address=address

If non-empty, address of a local network

interface which is used to join the multicast

group.

nak_delay_intervals=n
The number of intervals between naks after the

initial nak.
4

nak_depth=n
The number of datagrams to retain in order to

service repair requests (reliable only).
32

nak_interval=msec
The minimum number of milliseconds to wait

between repair requests (reliable only).
500

nak_max=n
The maximum number of times a missing

sample will be nak'ed.
3

nak_timeout=msec

The maximum number of milliseconds to wait

before giving up on a repair response (reliable

only).

30000 (30 sec)

port_offset=n

Used to set the port number when not

specifying a group address. When a group

address is specified, the port number within it is

used. If no group address is specified, the port

offset is used as a port number. This value

should not be set less than 49152.

49152

rcv_buffer_size=n

The size of the socket receive buffer in bytes. A

value of zero indicates that the system default

value is used.

0

reliable=[0|1] Enables reliable communication. 1

syn_backoff=n

The exponential base used during handshake

retries; smaller values yield shorter delays

between attempts.

2.0

syn_interval=msec

The minimum number of milliseconds to wait

between handshake attempts during

association.

250

syn_timeout=msec

The maximum number of milliseconds to wait

before giving up on a handshake response

during association. The default is 30 seconds.

30000 (30 sec)

ttl=n

The value of the time-to-live (ttl) field of any

datagrams sent. The default value of one means

that all data is restricted to the local network.

1

async_send=[0|1]
Send datagrams using Async I/O (on platforms

that support it efficiently).

1 3 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

 7.4.5.5 RTPS_UDP Transport Configuration Options
The OpenDDS implementation of the OMG DDSI-RTPS (formal/2014-09-01) specification

includes the transport protocols necessary to fulfill the specification requirements and those

needed to be interoperable with other DDS implementations. The rtps_udp transport is one

of the pluggable transports available to a developer and is necessary for interoperable

communication between implementations. This section will discuss the options available to

the developer for configuring OpenDDS to use this transport.

To provide an RTPS variant of the single configuration example from Section , the

configuration file below simply modifies the transport_type property to the value

rtps_udp. All other items remain the same.

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=myrtps

[transport/myrtps]
transport_type=rtps_udp
local_address=myhost

To extend our examples to a mixed transport configuration as shown in Section , below

shows the use of an rtps_udp transport mixed with a tcp transport. The interesting pattern

that this allows for is a deployed OpenDDS application that can be, for example,

communicating using tcp with other OpenDDS participants while communicating in an

interoperability configuration with a non-OpenDDS participant using rtps_udp.

[common]
DCPSGlobalTransportConfig=myconfig

[config/myconfig]
transports=mytcp,myrtps

[transport/myrtps]
transport_type=rtps_udp

[transport/mytcp]
transport_type=tcp

Some implementation notes related to using the rtps_udp transport protocol are as follows:

1) WRITER_DATA_LIFECYCLE (8.7.2.2.7) notes that the same Data sub-message should

dispose and unregister an instance. OpenDDS may use two Data sub-messages.

2) RTPS transport instances can not be shared by different Domain Participants.

3) Transport auto-selection (negotiation) is partially supported with RTPS such that the

rtps_udp transport goes through a handshaking phase only in reliable mode.

1 3 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.4 Transport Configuration

Table 7-17 RTPS_UDP Configuration Options

Option Description Default

use_multicast=[0|1]

The rtps_udp transport can use Unicast or

Multicast. When set to 0 (false) the transport uses

Unicast, otherwise a value of 1 (true) will use

Multicast.

1

multicast_group_address

=network_address

When the transport is set to multicast, this is the

multicast network address that should be used. If

no port is specified for the network address, port

7401 will be used.

239.255.0.2:7401

multicast_interface=iface

Specifies the network interface to be used by this

transport instance. This uses a platform-specific

format that identifies the network interface. On

Linux systems this would be something like eth0.

If this value is not configured, the Common

Configuration value DCPSDefaultAddress is used

to set the multicast interface.

The system default

interface is used

local_address=addr:[port]
Bind the socket to the given address and port.

Port can be omitted but the trailing “:” is required.
System default

ipv6_local_address=

addr:[port]

Bind the socket to the given address and port.

Port can be omitted but the trailing “:” is required.
System default

advertised_address=

addr:[port]

Sets the address advertised by the transport.

Typically used when the participant is behind a

firewall or NAT. Port can be omitted but the

trailing “:” is required.

ipv6_advertised_address=

addr:[port]

Sets the address advertised by the transport.

Typically used when the participant is behind a

firewall or NAT. Port can be omitted but the

trailing “:” is required.

send_delay=msec
Time in milliseconds for an RTPS Writer to wait

before sending data.
10

nak_depth=n
The number of data samples to retain in order to

service repair requests (reliable only).
32

nak_response_delay=msec

Protocol tuning parameter that allows the RTPS

Writer to delay the response (expressed in

milliseconds) to a request for data from a negative

acknowledgment.

(see table 8.47 in the OMG DDSI-RTPS

specification)

200

1 3 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Option Description Default

heartbeat_period=msec

Protocol tuning parameter that specifies in

milliseconds how often an RTPS Writer announces

the availability of data.

(see table 8.47 in the OMG DDSI-RTPS

specification)

1000 (1 sec)

ResponsiveMode=[0|1]
Causes reliable writers and readers to send

additional messages which may reduce latency.
0

max_message_size=n
The maximum message size. The default is the

maximum UDP message size.
65466

ttl=n

The value of the time-to-live (ttl) field of any

multicast datagrams sent. This value specifies the

number of hops the datagram will traverse before

being discarded by the network. The default value

of 1 means that all data is restricted to the local

network subnet.

1

DataRtpsRelayAddress=host

:port

Specifies the address of the RtpsRelay for RTPS

messages. See section 15.2.

RtpsRelayOnly=[0|1]
Only send RTPS message to the RtpsRelay (for

debugging). See section 15.2.
0

UseRtpsRelay=[0|1]

Send messages to the RtpsRelay. Messages will

only be sent if DataRtpsRelayAddress is set. See

section 15.2.

0

DataStunServerAddress=hos

t:port

Specifies the address of the STUN server to use

for RTPS when using ICE. See section 15.3.

UseIce=[0|1]
Enable or disable ICE for this transport instance.

See section 15.3.
0

 Additional RTPS_UDP Features

The RTPS_UDP transport implementation has capabilities that can only be enabled by API.

These features cannot be enabled using configuration files.

The RtpsUdpInst class has a method count_messages(bool flag) via inheritance from

TransportInst. With count_messages enabled, the transport will track various counters and

make them available to the application using the method

append_transport_statistics(TransportStatisticsSequence& seq). The elements of

that sequence are defined in IDL: OpenDDS::DCPS::TransportStatistics and detailed in

the tables below.

1 3 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.4 Transport Configuration

TransportStatistics

Type Name Description

string transport The name of the transport.

MessageCountSequence message_count
Set of message counts grouped by remote address.

See the MessageCount table below.

GuidCountSequence writer_resend_count

Map of counts indicating how many times a local writer has

resent a data sample. Each element in the sequence is a

structure containing a GUID and a count.

GuidCountSequence reader_nack_count
Map of counts indicating how many times a local reader has

requested a sample to be resent.

MessageCount

Type Name Description

Locator_t locator A byte array containing an IPv4 or IPv6 address.

MessageCountKind kind
Key indicating the type of message count for transports that use multiple

protocols.

boolean relay Indicates that the locator is a relay.

unsigned long send_count Number of messages sent to the locator.

unsigned long send_bytes Number of bytes sent to the locator.

unsigned long send_fail_count Number of sends directed at the locator that failed.

unsigned long send_fail_bytes Number of bytes directed at the locator that failed.

unsigned long recv_count Number of messages received from the locator.

unsigned long recv_bytes Number of bytes received from the locator.

 7.4.5.6 Shared-Memory Transport Configuration Options
The following table summarizes the transport configuration options that are unique to the

shmem transport. This transport type is supported Unix-like platforms with POSIX/XSI shared

memory and on Windows platforms. The shared memory transport type can only provide

communication between transport instances on the same host. As part of transport

1 3 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

negotiation (see 7.4.2.2), if there are multiple transport instances available for

communication between hosts, the shared memory transport instances will be skipped so

that other types can be used.

Table 7-18 Shared-Memory Transport Configuration Options

Option Description Default

pool_size=bytes
The size of the single shared-memory pool

allocated.

16777216

(16 MiB)

datalink_control_size=bytes

The size of the control area allocated for each

data link. This allocation comes out of the shared-

memory pool defined by pool_size.

4096 (4 KiB)

host_name=host
Override the host name used to identify the host

machine.

Uses fully

qualified

domain name

 7.5 Discovery and Transport
Configuration Templates
OpenDDS supports dynamic configuration of RTPS discovery and transports by means of

configuration templates in OpenDDS configuration files. This feature adds 3 optional file

sections, [DomainRange], [transport_template], and [Customization], as well as a new

transport property, instantiation_rule, which specifies when transport instances are

created. Configuration templates are processed at application startup; however, creation of

domain, discovery, and transport objects is deferred until a participant is created in a

corresponding domain.

A traditional OpenDDS application with 5 participants in different domains will have a

config.ini file with 5 separate but nearly identical [domain] sections. The same functionality

can be accomplished with a single [DomainRange/1-5] section using templates.

[Customization] sections can be used in [rtps_discovery] template sections to add the

domain ID to the multicast override address. This creates a unique address for each domain.

[Customization] sections can also be used with [transport_template] sections to modify

the transport multicast group addresses and address ports by domain ID. The

[transport_template] rule, instantiation_rule=per_participant, configures OpenDDS

to create a separate transport instance for each domain participant. This allows applications

to have multiple participants per domain when using RTPS.

1 3 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.5 Discovery and Transport Configuration

Templates

 7.5.1 Configuring Discovery For A Set Of Similar
Domains
Domain range sections are similar to domain sections and use the same configuration

properties with 3 notable differences.

• Domain ranges must have a beginning and end domain, such as

[DomainRange/1-5].

• Domain ranges use the DiscoveryTemplate property rather than the

DiscoveryConfig property to denote the corresponding [rtps_discovery] section.

• Domain ranges can have an optional Customization property that maps to a named

[Customization] section

See section 7.5.4 for a [DomainRange] example.

 7.5.2 Configuring A Set Of Similar Transports
Transport template sections are specified as [transport_template/name]. They are similar

to [transport] sections and use the same configuration properties as well as an optional

Customization property that maps to a named [Customization] section. To associate a

transport template with a domain range in a configuration file, set the

DCPSGlobalTransportConfig property in the [common] section to the name of the [config]

whose transports property is the name of the transport template. For example, for a global

config setting

[common]

DCPSGlobalTransportConfig=primary_config

a corresponding config could be

[config/primary_config]

transports=auto_config_rtps

and the partial transport template would be

[transport_template/auto_config_rtps]

transport_type=rtps_udp

1 3 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Domain participants that belong to a domain that is configured by a template can bind to

non-global transport configurations using the bind_config function. See section 7.4.2.3 for

a discussion of bind_config.

If the [transport_template] sets the property instantiation_rule=per_participant, a

separate transport instance will be created for each participant in the domain.

See section 7.5.4 for a [transport_template] example.

 7.5.3 Adding Customizations
[Customization] sections can modify the InteropMulticastOverride property in

[rtps_discovery] sections and the multicast_group_address property in

[transport_template] sections.

• InteropMulticastOverride=AddDomainId adds the domain id to the last octet of the

InteropMulticastOverride address

• multicast_group_address=add_domain_id_to_ip_addr adds the domain ID to the

last octet of the multicast group address

• multicast_group_address=add_domain_id_to_port uses the domain ID in the port

calculation for the multicast group address

 7.5.4 Example Config.ini
The following is an example configuration file for domains 2 through 10. It includes

customizations to add the domain ID to the discovery InteropMulticastOverride address

and customizations to add the domain ID to the transport’s multicast group IP address and

port.

[common]

DCPSGlobalTransportConfig=the_config

[DomainRange/2-10]

DiscoveryTemplate=DiscoveryConfigTemplate

[Customization/discovery_customization]

InteropMulticastOverride=AddDomainId

[Customization/transport_customization]

multicast_group_address=add_domain_id_to_ip_addr,add_domain_id_to_port

[rtps_discovery/DiscoveryConfigTemplate]

InteropMulticastOverride=239.255.4.0

1 4 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.5 Discovery and Transport Configuration

Templates

Customization=discovery_customization

SedpMulticast=1

[config/the_config]

transports=auto_config_rtps

[transport_template/auto_config_rtps]

transport_type=rtps_udp

instantiation_rule=per_participant

Customization=transport_customization

multicast_group_address=239.255.2.0

 7.6 Logging
By default, the OpenDDS framework will only log serious errors and warnings that can’t be

conveyed to the user in the API. An OpenDDS user may increase the amount of logging via

the log level and debug logging via controls at the DCPS, Transport, or Security layers.

The default destination of these log messages is the process’s standard error stream. See

Table 7-2 Common Configuration Options for options controlling the destination and

formatting of log messages.

The highest level logging is controlled by the general log levels listed in the following table.

1 4 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Run-time Configuration

Table 7-19: Log Levels

Level Values Description

Error

DCPSLogLevel: error

log_level: Log_Level::Error

ACE_Log_Priority: LM_ERROR

Logs issues that may prevent OpenDDS from

functioning properly or functioning as configured.

Warning

DCPSLogLevel: warning

log_level: Log_Level::Warning

ACE_Log_Priority: LM_WARNING

Log issues that should probably be addressed, but don’t

prevent OpenDDS from functioning. This is the default.

Notice

DCPSLogLevel: notice

log_level: Log_Level::Notice

ACE_Log_Priority: LM_NOTICE

Logs details of issues that are returned to the user via

the API, for example through a DDS::ReturnCode_t.

Info

DCPSLogLevel: info

log_level: Log_Level::Info

ACE_Log_Priority: LM_INFO

Logs a small amount of basic information, such as the

version of OpenDDS being used.

Debug

DCPSLogLevel: debug

log_level: Log_Level::Debug

ACE_Log_Priority: LM_DEBUG

This level doesn’t directly control any logging but will

enable at least DCPS and security debug level 1. For

backwards compatibility, setting DCPS debug logging

to greater than zero will set this log level. Setting the

log level to below this level will disable all debug

logging.

The log level can be set a number of ways. To do it with command line arguments, pass:

-DCPSLogLevel notice

Using a configuration file option is similar:

DCPSLogLevel=notice

Doing this from code can be done using an enumerator or a string:

OpenDDS::DCPS::log_level.set(OpenDDS::DCPS::LogLevel::Notice);
OpenDDS::DCPS::log_level.set_from_string(“notice”);

Passing invalid levels to the text-based methods will cause warning messages to be logged

unconditionally, but will not cause the DomainParticipantFactory to fail to initialize.

 7.6.1 DCPS Layer Debug Logging
Debug logging in the DCPS layer of OpenDDS is controlled by the DCPSDebugLevel

configuration option and command-line option. It can also be set in application code using:

OpenDDS::DCPS::set_DCPS_debug_level(level)

1 4 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.6 Logging

The level defaults to a value of 0 and has values of 0 to 10 as defined below:

• 0 – debug logging is disabled

• 1 - logs that should happen once per process

• 2 - logs that should happen once per DDS entity

• 4 - logs that are related to administrative interfaces

• 6 - logs that should happen every Nth sample write/read

• 8 - logs that should happen once per sample write/read

• 10 - logs that may happen more than once per sample write/read

 7.6.2 Transport Layer Debug Logging
OpenDDS transport debug layer logging is controlled via the DCPSTransportDebugLevel

configuration option. For example, to add transport layer logging to any OpenDDS

application that uses TheParticipantFactoryWithArgs, add the following option to the

command line:

-DCPSTransportDebugLevel level

The transport layer logging level can also be configured by setting the variable:

OpenDDS::DCPS::Transport_debug_level = level;

Valid transport logging levels range from 0 to 5 with increasing verbosity of output.

Transport logging level 6 is available to generate system trace logs. Using this level is not

recommended as the amount of data generated can be overwhelming and is mostly of

interest only to OpenDDS developers. Setting the logging level to 6 requires defining the

DDS_BLD_DEBUG_LEVEL macro to 6 and rebuilding OpenDDS.

There are additional debug logging options available through the transport_debug object

that are separate from the logging controlled by the transport debug level. For the moment

this can only be configured using C++; for example:

OpenDDS::DCPS::transport_debug.log_messages = true;

1 4 3 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 Run-time Configuration

Table 7-20 Transport Debug Logging Categories

Option Description

log_messages Log all RTPS messages sent or recieved.

log_progress Log progress for RTPS entity discovery and association.

log_dropped_messages Log received RTPS messages that were dropped.

log_nonfinal_messages
Log non-final RTPS messages send or received. Useful to gauge lost

messages and resends.

log_fragment_storage
Log fragment reassembly process for transports where that applies. Also

logged when the transport debug level is set to the most verbose.

log_remote_counts Log number of associations and pending associations of RTPS entities.

 7.6.3 Security Debug Logging
When OpenDDS is compiled with security enabled, debug logging for security can be

enabled using DCPSecurityDebug (See Table 7-2 Common Configuration Options). Security

logging is divided into categories, although DCPSSecurityDebugLevel is also provided,

which controls the categories in a similar manner and using the same scale as

DCPSDebugLevel.

1 4 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 7.6 Logging

Table 7-21 Security Debug Logging Categories

Option
Debug
Level Description

N/A 0 The default. Security related messages are not logged.

access_error 1 Log errors from permission and governance file parsing.

new_entity_error 1
Log security-related errors that prevented a DDS entity from being

created.

cleanup_error 1 Log errors from cleaning up DDS entities in the security plugins.

access_warn 2 Log warnings from permission and governance file parsing.

auth_warn 3
Log warnings from the authentication and handshake that happen

when two secure participants discover each other.

encdec_error 3 Log errors from the encryption and decryption of RTPS messages.

new_entity_warn 3 Log security-related warnings from creating a DDS entity.

bookkeeping 4
Log generation of crypto handles and keys for local DDS entities

and tracking crypto handles and keys for remote DDS entities.

auth_debug 4
Log debug information from the authentication and handshake that

happen when two secure participants discover each other.

encdec_warn 4
Log warnings from the encryption and decryption of RTPS

messages.

encdec_debug 8
Log debug information from the encryption and decryption of RTPS

messages.

showkeys 9 Log the whole key when generating it, receiving it, and using it.

chlookup 10

Very verbosely prints the steps being taken when looking up a

crypto handle for decrypting. This is most useful to see what keys a

participant has.

all 10 Enable all the security related logging.

Categories are passed to DCPSecurityDebug using a comma limited list:

-DCPSSecurityDebug=access_warn,showkeys

Unknown categories will cause warning messages, but will not cause the

DomainParticipantFactory to fail to initialize.

Like the other debug levels, security logging can also be programmatically configured. All

the following are equivalent:

OpenDDS::DCPS::security_debug.access_warn = true;
OpenDDS::DCPS::security_debug.set_debug_level(1);
OpenDDS::DCPS::security_debug.parse_flags(ACE_TEXT(“access_warn”));

1 4 5 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 8

opendds_idl

opendds_idl is one of the code generators used in the process of building OpenDDS and

OpenDDS applications. It can be used in a number of different ways to customize how

source code is generated from IDL files. See section 2.1.2 for an overview of the default

usage pattern.

The OpenDDS IDL compiler is invoked using the opendds_idl executable, located in

$DDS_ROOT/bin/ (on the PATH). It parses a single IDL file and generates the serialization

and key support code that OpenDDS requires to marshal and demarshal the types described

in the IDL file, as well as the type support code for the data readers and writers. For each

IDL file processed, such as xyz.idl, it generates three files: xyzTypeSupport.idl,

xyzTypeSupportImpl.h, and xyzTypeSupportImpl.cpp. In the typical usage, opendds_idl is

passed a number of options and the IDL file name as a parameter. For example,

opendds_idl [options...] Foo.idl

The remaining sections of this chapter describe all of the command-line options and the

ways that opendds_idl can be used to generate alternate mappings.

 8.1 opendds_idl Command Line Options
The following table summarizes the options supported by opendds_idl.

1 4 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 opendds_idl

Table 8-1 opendds_idl Command Line Options

Option Description Default

-v Enables verbose execution Quiet execution

-h Prints a help (usage) message and exits N/A

-V
Prints version numbers of both TAO and

OpenDDS
N/A

--idl-version VERSION Set the version of IDL to use. 4

--list-idl-versions
List the versions of IDL at least partially

supported.
N/A

--syntax-only
Just check syntax of input files, exiting after

parsing.
Goes on to generate code

-Wb,export_macro=macro

Export macro used for generating C++

implementation code.

--export is equivalent to -Wb,export_macro

No export macro used

-Wb,export_include=file

Additional header to #include in generated

code — this header #defines the export

macro

No additional include

-Wb,pch_include=file
Pre-compiled header file to include in

generated C++ files

No pre-compiled header

included

-Dname[=value] Define a preprocessor macro N/A

-Idir Add dir to the preprocessor include path N/A

-o outputdir
Output directory where opendds_idl should

place the generated files.
The current directory

-Wb,java
Enable OpenDDS Java Bindings for generated

TypeSupport implementation classes
No Java support

-Gitl

Generates “Intermediate Type Language”

descriptions of datatypes. These files are

used by the Wireshark dissector or other

external applications.

Not generated

-GfaceTS
Generates FACE (Future Airborne Capability

Environment) Transport Services API
Not generated

-Gv8

Generate type support for converting data

samples to/from V8 JavaScript objects

-Wb,v8 is an alternative form of this option

Not generated

-Grapidjson
Generate type support for converting data

samples to/from RapidJSON objects
Not generated

-Gxtypes-complete

Generate complete XTypes TypeObjects

which can be used to provide type

information to applications that don’t have

compile-time knowledge of the IDL. See

section 16.7.

Only minimal

TypeObjects are

generated

1 4 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 8.1 opendds_idl Command Line Options

Option Description Default
-Lface Generates IDL-to-C++ mapping for FACE Not generated

-Lspcpp
Generates IDL-to-C++ mapping for Safety

Profile
Not generated

-Lc++11 Generates IDL-to-C++11 mapping Not generated

-Wb,tao_include_prefix=s

Prefix the string s to #include directives

meant to include headers generated by

tao_idl

N/A

-St
Suppress generation of IDL TypeCodes when

one of the -L options are present.

IDL TypeCodes

generated

--unknown-annotations

VAL

For IDL version 4, control the reaction to

unknown annotations. The options are:

• warn-once, the default, warn once

per annotation with the same name.

• warn-all, warn for every use of an

unknown annotation.

• error, similar to warn-all, but

causes the compiler to exit with an

error status when finished.

• ignore, ignore all unknown

annotations.

warn-once

--no-dcps-data-type-

warnings
Don't warn about #pragma DCPS_DATA_TYPE

Warnings are issued, use

annotations to silence

them

--[no-]default-nested
Un-annotated types/modules are treated as

nested. See section 2.1.1.4 for details.

Types are nested by

default.

--default-extensibility

VAL

Set the default XTypes Extensibility – see

section 16.6.3
appendable

--default-enum-

extensibility-zero

Do not set the type flags for enums. This flag

is for simulating the behavior of previous

versions of OpenDDS.

--default-autoid VAL

Set the default XTypes auto member-id

assignment strategy: sequential or hash – see

section 16.6.5.2

sequential

--default-try-construct

VAL

Set the default XTypes try-construct strategy:

discard, use-default, or trim – see section

16.6.4

discard

--old-typeobject-

encoding

Use the pre-3.18 encoding of TypeObjects

when deriving TypeIdentifiers
Use standard encoding

The code generation options allow the application developer to use the generated code in a

wide variety of environments. Since IDL may contain preprocessing directives (#include,

1 4 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 opendds_idl

#define, etc.), the C++ preprocessor is invoked by opendds_idl. The -I and -D options

allow customization of the preprocessing step. The -Wb,export_macro option lets you add

an export macro to your class definitions. This is required if the generated code is going to

reside in a shared library and the compiler (such as Visual C++ or GCC) uses the export

macro (dllexport on Visual C++ / overriding hidden visibility on GCC). The -

Wb,pch_include option is required if the generated implementation code is to be used in a

project that uses precompiled headers.

 8.2 Using the IDL-to-C++11 Mapping
The IDL-to-C++11 Mapping is a separate specification from the OMG. Like the “classic”

IDL-to-C++ Mapping, IDL-to-C++11 describes how IDL constructs (structs, sequences,

unions, etc.) should appear in C++. Since the IDL-to-C++11 Mapping assumes a C++11

(or higher) compiler and standard library, the code generated is easier to use and looks

more natural to C++ developers who are not familiar with the classic mapping. For

example, IDL strings, arrays, and sequences map to their equivalents in the std namespace:

string, array, and vector. All of the details of the mapping are spelled out in the

specification document (available at https://www.omg.org/spec/CPP11), however the easiest

way to get started with the mapping is to generate code from IDL and examine the

generated header file.

In opendds_idl’s default mode (as described in section 2.1.2), responsibility for generating

the language mapping is delegated to tao_idl (using the IDL-to-C++ classic mapping). In

this case, opendds_idl is only responsible for generating the OpenDDS-specific additions

such as TypeSupport.idl and the marshal/demarshal functions.

Contrast this with using opendds_idl for IDL-to-C++11. In this case, opendds_idl takes

over responsibility for generating the language mapping. This is indicated by the -Lc++11

command-line option.

Starting with a user-written file Foo.idl, running “opendds_idl -Lc++11 <other options>

Foo.idl” generates these output files:

• FooTypeSupport.idl

◦ IDL local interfaces for *TypeSupport, *DataWriter, *DataReader

• FooC.h

◦ IDL-to-C++11 language mapping

• FooTypeSupportImpl.h and .cpp

◦ Additional source code needed for OpenDDS

1 5 0 O p e n D D S D e v e l o p e r ’ s G u i d e

https://www.omg.org/spec/CPP11

 8.2 Using the IDL-to-C++11 Mapping

FooTypeSupport.idl is the same as it was when using the classic mapping. After it’s

generated by opendds_idl, it needs to be processed by tao_idl to generate

FooTypeSupportC.h, FooTypeSupportC.inl, and FooTypeSupportC.cpp.

Unlike when using the classic mapping, Foo.idl is not processed by tao_idl.

Foo.idl can contain the following IDL features:

• modules, typedefs, and constants

• basic types

• constructed types: enums, structs and unions

◦ Note that setting a union value through a modifier method automatically sets

the discriminator. In cases where there are multiple possible values for the

discriminator, a 2-argument modifier method is provided. Using this is

preferred to using _d().

◦ If you chose to use the _d() method of the generated union types, note the

following requirement from the specification: “The _d discriminator modifier can

only be used to set the discriminant to a value within the same union member.”

OpenDDS treats this as a precondition (it is not checked within the

implementation).

• strings (narrow and wide), sequences, and arrays

◦ Bounded strings and sequences are supported, but bounds checks are not

currently enforced. Due to this limitation, distinct types are not used for

bounded instantiations.

• annotations – see section 2.1.1

• #includes of IDL files that are also used with the IDL-to-C++11 mapping

When using MPC to generate projects, the opendds_cxx11 base project should be used to

inherit the correct settings for code generation. If the generated code will be part of a

shared library, use the -Wb,export_include option (in addition to -Wb,export_macro) so

that the generated headers have an #include for the export header.

When using CMake to generate projects, see the CMake module documentation included in

the OpenDDS repository (docs/cmake.md).

1 5 1 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 9

The DCPS Information

Repository

 9.1 DCPS Information Repository Options
The table below shows the command line options for the DCPSInfoRepo server:

Table 9-1 DCPS Information Repository Options

Option Description Default

-o file
Write the IOR of the DCPSInfo object to the specified

file
repo.ior

-NOBITS Disable the publication of built-in topics
Built-in topics are

published

-a address
Listening address for built-in topics (when built-in

topics are published).
Random port

-z Turn on verbose transport logging
Minimal transport

logging.

-r Resurrect from persistent file 1(true)

-FederationId <id>

Unique identifier for this repository within any

federation. This is supplied as a 32 bit decimal

numeric value.

N/A

1 5 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 The DCPS Information Repository

Option Description Default

-FederateWith <ref>

Repository federation reference at which to join a

federation. This is supplied as a valid CORBA object

reference in string form: stringified IOR, file: or

corbaloc: reference string.

N/A

-? Display the command line usage and exit N/A

OpenDDS clients often use the IOR file that DCPSInfoRepo outputs to locate the service. The

-o option allows you to place the IOR file into an application-specific directory or file name.

This file can subsequently be used by clients with the file:// IOR prefix.

Applications that do not use built-in topics may want to disable them with -NOBITS to reduce

the load on the server. If you are publishing the built-in topics, then the -a option lets you

pick the listen address of the tcp transport that is used for these topics.

Using the -z option causes the invocation of many transport-level debug messages. This

option is only effective when the DCPS library is built with the DCPS_TRANS_VERBOSE_DEBUG

environment variable defined.

The -FederationId and -FederateWith options are used to control the federation of

multiple DCPSInfoRepo servers into a single logical repository. See 9.2 for descriptions of

the federation capabilities and how to use these options.

File persistence is implemented as an ACE Service object and is controlled via service

config directives. Currently available configuration options are:

Table 9-2 InfoRepo persistence directives

Options Description Defaults

-file Name of the persistent file InforepoPersist

-reset Wipe out old persistent data. 0 (false)

The following directive:

static PersistenceUpdater_Static_Service "-file info.pr -reset 1"

will persist DCPSInfoRepo updates to local file info.pr. If a file by that name already exists,

its contents will be erased. Used with the command-line option -r, the DCPSInfoRepo can be

reincarnated to a prior state. When using persistence, start the DCPSInfoRepo process using

a TCP fixed port number with the following command line option. This allows existing

clients to reconnect to a restarted InfoRepo.

-ORBListenEndpoints iiop://:<port>

1 5 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 9.2 Repository Federation

 9.2 Repository Federation
Repository federation should be considered an experimental feature.

Repository Federation allows multiple DCPS Information Repository servers to collaborate

with one another into a single federated service. This allows applications obtaining service

metadata and events from one repository to obtain them from another if the original

repository is no longer available.

While the motivation to create this feature was the ability to provide a measure of fault

tolerance to the DDS service metadata, other use cases can benefit from this feature as

well. This includes the ability of initially separate systems to become federated and gain the

ability to pass data between applications that were not originally reachable. An example of

this would include two platforms which have independently established internal DDS

services passing data between applications; at some point during operation the systems

become reachable to each other and federating repositories allows data to pass between

applications on the different platforms.

The current federation capabilities in OpenDDS provide only the ability to statically specify

a federation of repositories at startup of applications and repositories. A mechanism to

dynamically discover and join a federation is planned for a future OpenDDS release.

OpenDDS automatically detects the loss of a repository by using the LIVELINESS Quality of

Service policy on a Built-in Topic. When a federation is used, the LIVELINESS QoS policy is

modified to a non-infinite value. When LIVELINESS is lost for a Built-in Topic an application

will initiate a failover sequence causing it to associate with a different repository server.

Because the federation implementation currently uses a Built-in Topic

ParticipantDataDataReaderListener entity, applications should not install their own

listeners for this topic. Doing so would affect the federation implementation’s capability to

detect repository failures.

The federation implementation distributes repository data within the federation using a

reserved DDS domain. The default domain used for federation is defined by the constant

Federator::DEFAULT_FEDERATIONDOMAIN.

Currently only static specification of federation topology is available. This means that each

DCPS Information Repository, as well as each application using a federated DDS service,

needs to include federation configuration as part of its configuration data. This is done by

specifying each available repository within the federation to each participating process and

assigning each repository to a different key value in the configuration files as described in

Section 7.3.2.1.

1 5 5 O p e n D D S D e v e l o p e r ’ s G u i d e

Note

 The DCPS Information Repository

Each application and repository must include the same set of repositories in its

configuration information. Failover sequencing will attempt to reach the next repository in

numeric sequence (wrapping from the last to the first) of the repository key values. This

sequence is unique to each application configured, and should be different to avoid

overloading any individual repository.

Once the topology information has been specified, then repositories will need to be started

with two additional command line arguments. These are shown in Table 9-1. One, -

FederationId <value>, specifies the unique identifier for a repository within the

federation. This is a 32 bit numeric value and needs to be unique for all possible federation

topologies.

The second command line argument required is -FederateWith <ref>. This causes the

repository to join a federation at the <ref> object reference after initialization and before

accepting connections from applications.

Only repositories which are started with a federation identification number may participate

in a federation. The first repository started should not be given a -FederateWith command

line directive. All others are required to have this directive in order to establish the initial

federation. There is a command line tool (federation) supplied that can be used to

establish federation associations if this is not done at startup. See Section 9.2.1 for a

description. It is possible, with the current static-only implementation, that the failure of a

repository before a federation topology is entirely established could result in a partially

unusable service. Due to this current limitation, it is highly recommended to always

establish the federation topology of repositories prior to starting the applications.

 9.2.1 Federation Management
A new command line tool has been provided to allow some minimal run-time management of

repository federation. This tool allows repositories started without the -FederateWith

option to be commanded to participate in a federation. Since the operation of the federated

repositories and failover sequencing depends on the presence of connected topology, it is

recommended that this tool be used before starting applications that will be using the

federated set of repositories.

The command is named repoctl and is located in the $DDS_ROOT/bin/ directory. It has a

command format syntax of:

 repoctl <cmd> <arguments>

Where each individual command has its own format as shown in Table 9-3. Some options

contain endpoint information. This information consists of an optional host specification,

1 5 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 9.2 Repository Federation

separated from a required port specification by a colon. This endpoint information is used to

create a CORBA object reference using the corbaloc: syntax in order to locate the

'Federator' object of the repository server.

Table 9-3 repoctl Repository Management Command

Command Syntax Description

join
repoctl join <target> <peer>

[<federation domain>]

Calls the <peer> to join <target> to the federation.

<federation domain> is passed if present, or the

default Federation Domain value is passed.

leave repoctl leave <target>

Causes the <target> to gracefully leave the

federation, removing all managed associations

between applications using <target> as a

repository with applications that are not using

<target> as a repository.

shutdown repoctl shutdown <target>

Causes the <target> to shutdown without removing

any managed associations. This is the same effect

as a repository which has crashed during operation.

kill repoctl kill <target>
Kills the <target> repository regardless of its

federation status.

help repoctl help Prints a usage message and quits.

A join command specifies two repository servers (by endpoint) and asks the second to join

the first in a federation:

 repoctl join 2112 otherhost:1812

This generates a CORBA object reference of corbaloc::otherhost:1812/Federator that

the federator connects to and invokes a join operation. The join operation invocation passes

the default Federation Domain value (because we did not specify one) and the location of

the joining repository which is obtained by resolving the object reference

corbaloc::localhost:2112/Federator.

A full description of the command arguments are shown in Table 9-4.

Table 9-4 Federation Management Command Arguments

Option Description

<target>

This is endpoint information that can be used to locate the

Federator::Manager CORBA interface of a repository which is used to

manage federation behavior. This is used to command leave and shutdown

federation operations and to identify the joining repository for the join

command.

1 5 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 The DCPS Information Repository

Option Description

<peer>

This is endpoint information that can be used to locate the

Federator::Manager CORBA interface of a repository which is used to

manage federation behavior. This is used to command join federation

operations.

<federation domain>

This is the domain specification used by federation participants to distribute

service metadata amongst the federated repositories. This only needs to be

specified if more than one federation exists among the same set of

repositories, which is currently not supported. The default domain is

sufficient for single federations.

 9.2.2 Federation Example
In order to illustrate the setup and use of a federation, this section walks through a simple

example that establishes a federation and a working service that uses it.

This example is based on a two repository federation, with the simple Message publisher

and subscriber from 2.1 configured to use the federated repositories.

 9.2.2.1 Configuring the Federation Example
There are two configuration files to create for this example one each for the message

publisher and subscriber.

The Message Publisher configuration pub.ini for this example is as follows:

 [common]
 DCPSDebugLevel=0

 [domain/information]
 DomainId=42
 DomainRepoKey=1

 [repository/primary]
 RepositoryKey=1
 RepositoryIor=corbaloc::localhost:2112/InfoRepo

 [repository/secondary]
 RepositoryKey=2
 RepositoryIor=file://repo.ior

Note that the DCPSInfo attribute/value pair has been omitted from the [common] section.

This has been replaced by the [domain/user] section as described in 7.5. The user domain

is 42, so that domain is configured to use the primary repository for service metadata and

events.

The [repository/primary] and [repository/secondary] sections define the primary

and secondary repositories to use within the federation (of two repositories) for this

1 5 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 9.2 Repository Federation

application. The RepositoryKey attribute is an internal key value used to uniquely identify

the repository (and allow the domain to be associated with it, as in the preceding

[domain/information] section). The RepositoryIor attributes contain string values of

resolvable object references to reach the specified repository. The primary repository is

referenced at port 2112 of the localhost and is expected to be available via the TAO

IORTable with an object name of /InfoRepo. The secondary repository is expected to

provide an IOR value via a file named repo.ior in the local directory.

The subscriber process is configured with the sub.ini file as follows:

 [common]
 DCPSDebugLevel=0

 [domain/information]
 DomainId=42
 DomainRepoKey=1

 [repository/primary]
 RepositoryKey=1
 RepositoryIor=file://repo.ior

 [repository/secondary]
 RepositoryKey=2
 RepositoryIor=corbaloc::localhost:2112/InfoRepo

Note that this is the same as the pub.ini file except the subscriber has specified that the

repository located at port 2112 of the localhost is the secondary and the repository located

by the repo.ior file is the primary. This is opposite of the assignment for the publisher. It

means that the publisher is started using the repository at port 2112 for metadata and

events while the subscriber is started using the repository located by the IOR contained in

the file. In each case, if a repository is detected as unavailable the application will attempt

to use the other repository if it can be reached.

The repositories do not need any special configuration specifications in order to participate

in federation, and so no files are required for them in this example.

 9.2.2.2 Running the Federation Example
The example is executed by first starting the repositories and federating them, then starting

the application publisher and subscriber processes the same way as was done in the

example of Section 2.1.7.

Start the first repository as:

 $DDS/bin/DCPSInfoRepo -ORBSvcConf tcp.conf -o repo.ior -FederationId 1024

The -o repo.ior option ensures that the repository IOR will be placed into the file as

expected by the configuration files. The -FederationId 1024 option assigns the value 1024

1 5 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 The DCPS Information Repository

to this repository as its unique id within the federation. The -ORBSvcConf tcp.conf option

is the same as in the previous example.

Start the second repository as:

 $DDS/bin/DCPSInfoRepo -ORBSvcConf tcp.conf \
 -ORBListenEndpoints iiop://localhost:2112 \
 -FederationId 2048 -FederateWith file://repo.ior

Note that this is all intended to be on a single command line. The -ORBSvcConf tcp.conf

option is the same as in the previous example. The -ORBListenEndpoints

iiop://localhost:2112 option ensures that the repository will be listening on the port that

the previous configuration files are expecting. The -FederationId 2048 option assigns the

value 2048 as the repositories unique id within the federation. The -FederateWith

file://repo.ior option initiates federation with the repository located at the IOR

contained within the named file - which was written by the previously started repository.

Once the repositories have been started and federation has been established (this will be

done automatically after the second repository has initialized), the application publisher and

subscriber processes can be started and should execute as they did for the previous

example in Section 2.1.7.

1 6 0 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 10

Java Bindings

 10.1 Introduction
OpenDDS provides JNI bindings. Java applications can make use of the complete OpenDDS

middleware just like C++ applications.

See the $DDS_ROOT/java/INSTALL file for information on getting started, including the

prerequisites and dependencies.

Java versions 9 and up use the Java Platform Module System. To use OpenDDS with one of

these Java versions, set the MPC feature java_pre_jpms to 0. OpenDDS’s configure script

will attempt to detect the Java version and set this automatically.

See the $DDS_ROOT/java/FAQ file for information on common issues encountered while

developing applications with the Java bindings.

 10.2 IDL and Code Generation
The OpenDDS Java binding is more than just a library that lives in one or two .jar files. The

DDS specification defines the interaction between a DDS application and the DDS

middleware. In particular, DDS applications send and receive messages that are strongly-

typed and those types are defined by the application developer in IDL.

1 6 1 O p e n D D S D e v e l o p e r ’ s G u i d e

https://en.wikipedia.org/wiki/Java_Platform_Module_System

 Java Bindings

In order for the application to interact with the middleware in terms of these user-defined

types, code must be generated at compile-time based on this IDL. C++, Java, and even some

additional IDL code is generated. In most cases, application developers do not need to be

concerned with the details of all the generated files. Scripts included with OpenDDS

automate this process so that the end result is a native library (.so or .dll) and a Java

library (.jar or just a classes directory) that together contain all of the generated code.

Below is a description of the generated files and which tools generate them. In this example,

Foo.idl contains a single struct Bar contained in module Baz (IDL modules are similar to

C++ namespaces and Java packages). To the right of each file name is the name of the tool

that generates it, followed by some notes on its purpose.

Table 10-1 Generated files descriptions

File Generation Tool

Foo.idl Developer-written description of the DDS sample type

Foo{C,S}.{h,inl,cpp} tao_idl: C++ representation of the IDL

FooTypeSupport.idl opendds_idl: DDS type-specific interfaces

FooTypeSupport{C,S}.{h,inl,cpp} tao_idl

Baz/BarSeq{Helper,Holder}.java idl2jni

Baz/BarData{Reader,Writer}*.java idl2jni

Baz/BarTypeSupport*.java idl2jni (except TypeSupportImpl, see below)

FooTypeSupportJC.{h,cpp} idl2jni: JNI native method implementations

FooTypeSupportImpl.{h,cpp} opendds_idl: DDS type-specific C++ impl.

Baz/BarTypeSupportImpl.java opendds_idl: DDS type-specific Java impl.

Baz/Bar*.java idl2jni: Java representation of IDL struct

FooJC.{h,cpp} idl2jni: JNI native method implementations

Foo.idl:

module Baz {
 @topic
 struct Bar {
 long x;
 };
};

 10.3 Setting up an OpenDDS Java Project
These instructions assume you have completed the installation steps in the

$DDS_ROOT/java/INSTALL document, including having the various environment variables

defined.

1) Start with an empty directory that will be used for your IDL and the code generated

from it. $DDS_ROOT/java/tests/messenger/messenger_idl/ is set up this way.

1 6 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 10.3 Setting up an OpenDDS Java Project

2) Create an IDL file describing the data structure you will be using with OpenDDS. See

Messenger.idl for an example. This file will contain at least struct/union annotated with

@topic. For the sake of these instructions, we will call the file Foo.idl.

3) The C++ generated classes will be packaged in a shared library to be loaded at run-

time by the JVM. This requires the packaged classes to be exported for external

visibility. ACE provides a utility script for generating the correct export macros. The

script usage is shown here:

Unix:

$ACE_ROOT/bin/generate_export_file.pl Foo > Foo_Export.h

Windows:

%ACE_ROOT%\bin\generate_export_file.pl Foo > Foo_Export.h

4) Create an MPC file, Foo.mpc, from this template:

 project: dcps_java {

 idlflags += -Wb,stub_export_include=Foo_Export.h \
 -Wb,stub_export_macro=Foo_Export
 dcps_ts_flags += -Wb,export_macro=Foo_Export
 idl2jniflags += -Wb,stub_export_include=Foo_Export.h \
 -Wb,stub_export_macro=Foo_Export
 dynamicflags += FOO_BUILD_DLL

 specific {
 jarname = DDS_Foo_types
 }

 TypeSupport_Files {
 Foo.idl
 }
 }

You can leave out the specific {...} block if you do not need to create a jar file. In

this case you can directly use the Java .class files which will be generated under the

classes subdirectory of the current directory.

5) Run MPC to generate platform-specific build files.

Unix:

$ACE_ROOT/bin/mwc.pl -type gnuace

Windows:

%ACE_ROOT%\bin\mwc.pl -type [CompilerType]

CompilerType can be any supported MPC type (such as “vs2019”)

1 6 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Java Bindings

Make sure this is running ActiveState Perl or Strawberry Perl.

6) Compile the generated C++ and Java code

Unix:

make (GNU make, so this may be "gmake" on Solaris systems)

Windows:

Build the generated .sln (Solution) file using your preferred method. This can be

either the Visual Studio IDE or one of the command-line tools. If you use the IDE,

start it from a command prompt using devenv so that it inherits the environment

variables. Command-line tools for building include msbuild and invoking the IDE

(devenv) with the appropriate arguments.

When this completes successfully you have a native library and a Java .jar file. The

native library names are as follows:

Unix:

libFoo.so

Windows:

Foo.dll (Release) or Food.dll (Debug)

You can change the locations of these libraries (including the .jar file) by adding a

line such as the following to the Foo.mpc file:

libout = $(PROJECT_ROOT)/lib

where PROJECT_ROOT can be any environment variable defined at build-time.

7) You now have all of the Java and C++ code needed to compile and run a Java OpenDDS

application. The generated .jar file needs to be added to your classpath, along with

the .jar files that come from OpenDDS (in the lib directory). The generated C++

library needs to be available for loading at run-time:

Unix:

Add the directory containing libFoo.so to the LD_LIBRARY_PATH.

Windows:

Add the directory containing Foo.dll (or Food.dll) to the PATH. If you are using the

debug version (Food.dll) you will need to inform the OpenDDS middleware that it

should not look for Foo.dll. To do this, add -Dopendds.native.debug=1 to the Java

VM arguments.

1 6 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 10.3 Setting up an OpenDDS Java Project

See the publisher and subscriber directories in $DDS_ROOT/java/tests/messenger/

for examples of publishing and subscribing applications using the OpenDDS Java

bindings.

8) If you make subsequent changes to Foo.idl, start by re-running MPC (step #5 above).

This is needed because certain changes to Foo.idl will affect which files are generated

and need to be compiled.

 10.4 A Simple Message Publisher
This section presents a simple OpenDDS Java publishing process. The complete code for this

can be found at $DDS_ROOT/java/tests/messenger/publisher/TestPublisher.java.

Uninteresting segments such as imports and error handling have been omitted here. The

code has been broken down and explained in logical subsections.

 10.4.1 Initializing The Participant
DDS applications are boot-strapped by obtaining an initial reference to the Participant

Factory. A call to the static method TheParticipantFactory.WithArgs() returns a Factory

reference. This also transparently initializes the C++ Participant Factory. We can then

create Participants for specific domains.

 public static void main(String[] args) {

 DomainParticipantFactory dpf =
 TheParticipantFactory.WithArgs(new StringSeqHolder(args));
 if (dpf == null) {
 System.err.println ("Domain Participant Factory not found");
 return;
 }
 final int DOMAIN_ID = 42;
 DomainParticipant dp = dpf.create_participant(DOMAIN_ID,
 PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);
 if (dp == null) {
 System.err.println ("Domain Participant creation failed");
 return;
 }

Object creation failure is indicated by a null return. The third argument to

create_participant() takes a Participant events listener. If one is not available, a null can

be passed instead as done in our example.

1 6 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Java Bindings

 10.4.2 Registering The Data Type And Creating A
Topic
Next we register our data type with the DomainParticipant using the register_type()

operation. We can specify a type name or pass an empty string. Passing an empty string

indicates that the middleware should simply use the identifier generated by the IDL

compiler for the type.

 MessageTypeSupportImpl servant = new MessageTypeSupportImpl();
 if (servant.register_type(dp, "") != RETCODE_OK.value) {
 System.err.println ("register_type failed");
 return;
 }

Next we create a topic using the type support servant’s registered name.

 Topic top = dp.create_topic("Movie Discussion List",
 servant.get_type_name(),
 TOPIC_QOS_DEFAULT.get(), null,
 DEFAULT_STATUS_MASK.value);

Now we have a topic named “Movie Discussion List” with the registered data type and

default QoS policies.

 10.4.3 Creating A Publisher
Next, we create a publisher:

 Publisher pub = dp.create_publisher(
 PUBLISHER_QOS_DEFAULT.get(),
 null,
 DEFAULT_STATUS_MASK.value);

 10.4.4 Creating A DataWriter And Registering An
Instance
With the publisher, we can now create a DataWriter:

 DataWriter dw = pub.create_datawriter(
 top, DATAWRITER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

The DataWriter is for a specific topic. For our example, we use the default DataWriter QoS

policies and a null DataWriterListener.

Next, we narrow the generic DataWriter to the type-specific DataWriter and register the

instance we wish to publish. In our data definition IDL we had specified the subject_id field

as the key, so it needs to be populated with the instance id (99 in our example):

1 6 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 10.4 A Simple Message Publisher

 MessageDataWriter mdw = MessageDataWriterHelper.narrow(dw);
 Message msg = new Message();
 msg.subject_id = 99;
 int handle = mdw.register(msg);

Our example waits for any peers to be initialized and connected. It then publishes a few

messages which are distributed to any subscribers of this topic in the same domain.

 msg.from = "OpenDDS-Java";
 msg.subject = "Review";
 msg.text = "Worst. Movie. Ever.";
 msg.count = 0;
 int ret = mdw.write(msg, handle);

 10.5 Setting up the Subscriber
Much of the initialization code for a subscriber is identical to the publisher. The subscriber

needs to create a participant in the same domain, register an identical data type, and create

the same named topic.

 public static void main(String[] args) {

 DomainParticipantFactory dpf =
 TheParticipantFactory.WithArgs(new StringSeqHolder(args));
 if (dpf == null) {
 System.err.println ("Domain Participant Factory not found");
 return;
 }
 DomainParticipant dp = dpf.create_participant(42,
 PARTICIPANT_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);
 if (dp == null) {
 System.err.println("Domain Participant creation failed");
 return;
 }

 MessageTypeSupportImpl servant = new MessageTypeSupportImpl();

 if (servant.register_type(dp, "") != RETCODE_OK.value) {
 System.err.println ("register_type failed");
 return;
 }
 Topic top = dp.create_topic("Movie Discussion List",
 servant.get_type_name(),
 TOPIC_QOS_DEFAULT.get(), null,
 DEFAULT_STATUS_MASK.value);

 10.5.1 Creating A Subscriber
As with the publisher, we create a subscriber:

 Subscriber sub = dp.create_subscriber(
 SUBSCRIBER_QOS_DEFAULT.get(), null, DEFAULT_STATUS_MASK.value);

1 6 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 Java Bindings

 10.5.2 Creating A DataReader And Listener
Providing a DataReaderListener to the middleware is the simplest way to be notified of the

receipt of data and to access the data. We therefore create an instance of a

DataReaderListenerImpl and pass it as a DataReader creation parameter:

 DataReaderListenerImpl listener = new DataReaderListenerImpl();
 DataReader dr = sub.create_datareader(
 top, DATAREADER_QOS_DEFAULT.get(), listener,
 DEFAULT_STATUS_MASK.value);

Any incoming messages will be received by the Listener in the middleware’s thread. The

application thread is free to perform other tasks at this time.

 10.6 The DataReader Listener
Implementation
The application defined DataReaderListenerImpl needs to implement the specification’s

DDS.DataReaderListener interface. OpenDDS provides an abstract class

DDS._DataReaderListenerLocalBase. The application’s listener class extends this abstract

class and implements the abstract methods to add application-specific functionality.

Our example DataReaderListener stubs out most of the Listener methods. The only method

implemented is the message available callback from the middleware:

public class DataReaderListenerImpl extends DDS._DataReaderListenerLocalBase {

 private int num_reads_;

 public synchronized void on_data_available(DDS.DataReader reader) {
 ++num_reads_;
 MessageDataReader mdr = MessageDataReaderHelper.narrow(reader);
 if (mdr == null) {
 System.err.println ("read: narrow failed.");
 return;
 }

The Listener callback is passed a reference to a generic DataReader. The application

narrows it to a type-specific DataReader:

 MessageHolder mh = new MessageHolder(new Message());
 SampleInfoHolder sih = new SampleInfoHolder(new SampleInfo(0, 0, 0,
 new DDS.Time_t(), 0, 0, 0, 0, 0, 0, 0, false));
 int status = mdr.take_next_sample(mh, sih);

1 6 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 10.6 The DataReader Listener Implementation

It then creates holder objects for the actual message and associated SampleInfo and takes

the next sample from the DataReader. Once taken, that sample is removed from the

DataReader’s available sample pool.

 if (status == RETCODE_OK.value) {

 System.out.println ("SampleInfo.sample_rank = "+ sih.value.sample_rank);
 System.out.println ("SampleInfo.instance_state = "+
 sih.value.instance_state);

 if (sih.value.valid_data) {

 System.out.println("Message: subject = " + mh.value.subject);
 System.out.println(" subject_id = " + mh.value.subject_id);
 System.out.println(" from = " + mh.value.from);
 System.out.println(" count = " + mh.value.count);
 System.out.println(" text = " + mh.value.text);
 System.out.println("SampleInfo.sample_rank = " +
 sih.value.sample_rank);
 }
 else if (sih.value.instance_state ==
 NOT_ALIVE_DISPOSED_INSTANCE_STATE.value) {
 System.out.println ("instance is disposed");
 }
 else if (sih.value.instance_state ==
 NOT_ALIVE_NO_WRITERS_INSTANCE_STATE.value) {
 System.out.println ("instance is unregistered");
 }
 else {
 System.out.println ("DataReaderListenerImpl::on_data_available: "+
 "received unknown instance state "+
 sih.value.instance_state);
 }

 } else if (status == RETCODE_NO_DATA.value) {
 System.err.println ("ERROR: reader received DDS::RETCODE_NO_DATA!");
 } else {
 System.err.println ("ERROR: read Message: Error: "+ status);
 }
 }

}

The SampleInfo contains meta-information regarding the message such as the message

validity, instance state, etc.

 10.7 Cleaning up OpenDDS Java Clients
An application should clean up its OpenDDS environment with the following steps:

 dp.delete_contained_entities();

Cleans up all topics, subscribers and publishers associated with that Participant.

1 6 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Java Bindings

 dpf.delete_participant(dp);

The DomainParticipantFactory reclaims any resources associated with the

DomainParticipant.

 TheServiceParticipant.shutdown();

Shuts down the ServiceParticipant. This cleans up all OpenDDS associated resources.

Cleaning up these resources is necessary to prevent the DCPSInfoRepo from forming

associations between endpoints which no longer exist.

 10.8 Configuring the Example
OpenDDS offers a file-based configuration mechanism. The syntax of the configuration file is

similar to a Windows INI file. The properties are divided into named sections corresponding

to common and individual transports configuration.

The Messenger example has common properties for the DCPSInfoRepo objects location and

the global transport configuration:

[common]
DCPSInfoRepo=file://repo.ior
DCPSGlobalTransportConfig=$file

and a transport instance section with a transport type property:

[transport/1]
transport_type=tcp

The [transport/1] section contains configuration information for the transport instance

named “1”. It is defined to be of type tcp. The global transport configuration setting above

causes this transport instance to be used by all readers and writers in the process.

See Chapter 7 for a complete description of all OpenDDS configuration parameters.

 10.9 Running the Example
To run the Messenger Java OpenDDS application, use the following commands:

$DDS_ROOT/bin/DCPSInfoRepo -o repo.ior

$JAVA_HOME/bin/java -ea -cp
classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.jar:classes TestPublisher -
DCPSConfigFile pub_tcp.ini

1 7 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 10.9 Running the Example

$JAVA_HOME/bin/java -ea -cp
classes:$DDS_ROOT/lib/i2jrt.jar:$DDS_ROOT/lib/OpenDDS_DCPS.jar:classes TestSubscriber -
DCPSConfigFile sub_tcp.ini

The -DCPSConfigFile command-line argument passes the location of the OpenDDS

configuration file.

 10.10 Java Message Service (JMS) Support
OpenDDS provides partial support for JMS version 1.1

<http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html>. Enterprise Java

applications can make use of the complete OpenDDS middleware just like standard Java and

C++ applications.

See the INSTALL file in the $DDS_ROOT/java/jms/ directory for information on getting

started with the OpenDDS JMS support, including the prerequisites and dependencies.

1 7 1 O p e n D D S D e v e l o p e r ’ s G u i d e

http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

CHAPTER 11

Modeling SDK

The OpenDDS Modeling SDK is a modeling tool that can be used by the application

developer to define the required middleware components and data structures as a UML

model and then generate the code to implement the model using OpenDDS. The generated

code can then be compiled and linked with the application to provide seamless middleware

support to the application.

 11.1 Overview

 11.1.1 Model Capture
UML models defining DCPS elements and policies along with data definitions are captured

using the graphical model capture editors included in the Eclipse plug-ins. The elements of

the UML models follow the structure of the DDS UML Platform Independent Model (PIM)

defined in the DDS specification (OMG: formal/2015-04-10).

Opening a new OpenDDS model within the plug-ins begins with a top level main diagram.

This diagram includes any package structures to be included in the model along with the

local QoS policy definitions, data definitions, and DCPS elements of the model. Zero or more

of the policy or data definition elements can be included. Zero or one DCPS elements

definition can be included in any given model.

1 7 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Modeling SDK

Creating separate models for QoS policies only, data definitions only, or DCPS elements

only is supported. References to other models allows externally defined models to be

included in a model. This allows sharing of data definitions and QoS policies among different

DCPS models as well as including externally defined data in a new set of data definitions.

1 7 4 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 11-1 Graphical modeling of

the data definitions

 11.1 Overview

 11.1.2 Code Generation
Once models have been captured, source code can be generated from them. This source

code can then be compiled into link libraries providing the middleware elements defined in

the model to applications that link the library. Code generation is done using a separate

forms based editor.

Specifics of code generation are unique to the individual generation forms and are kept

separate from the models for which generation is being performed. Code generation is

performed on a single model at a time and includes the ability to tailor the generated code

as well as specifying search paths to be used for locating resources at build time.

It is possible to generate model variations (distinct customizations of the same model) that

can then be created within the same application or different applications. It is also possible

to specify locations to search for header files and link libraries at build time.

1 7 5 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 11-2 Graphical modeling of the

DCPS entities

 Modeling SDK

See section 11.3.2 , “Generated Code” for details.

 11.1.3 Programming
In order to use the middleware defined by models, applications need to link in the generated

code. This is done through header files and link libraries. Support for building applications

using the MPC portable build tool is included in the generated files for a model.

See section 11.3 , “Developing Applications” for details.

 11.2 Installation and Getting Started
Unlike the OpenDDS Middleware which is compiled from source code by the developer, the

compiled Modeling SDK is available for download via an Eclipse Update Site.

 11.2.1 Prerequisites
• Java Runtime Environment (JRE)

• Eclipse IDE

 11.2.2 Installation
1) From Eclipse, open the Help menu and select Install New Software.

1 7 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 11.2 Installation and Getting Started

9) Click the hyperlink for Available Software Sites.

10) The standard eclipse.org sites (Eclipse Project Updates and Galileo) should be

enabled. If they are disabled, enable them now.

11) Add a new Site entry named OpenDDS with URL

http://www.opendds.org/modeling/eclipse_44

12) Click OK to close the Preferences dialog and return to the Install dialog.

13) In the “Work with” combo box, select the new entry for OpenDDS.

14) Select the “OpenDDS Modeling SDK” and click Next.

15) Review the “Install Details” list and click Next. Review the license, select Accept (if

you do accept it), and click Finish.

16) Eclipse will download the OpenDDS plug-ins and various plug-ins from eclipse.org

that they depend on. There will be a security warning because the OpenDDS plug-ins

are not signed. There also may be a prompt to accept a certificate from eclipse.org.

17) Eclipse will prompt the user to restart in order to use the newly installed software.

1 7 7 O p e n D D S D e v e l o p e r ’ s G u i d e

Figure 11-3 Eclipse Software Installation Dialog

http://www.opendds.org/modeling/eclipse_44

 Modeling SDK

 11.2.3 Getting Started
The OpenDDS Modeling SDK contains an Eclipse Perspective. Open it by going to the

Window menu and selecting Open Perspective -> Other -> OpenDDS Modeling.

To get started using the OpenDDS Modeling SDK, see the help content installed in Eclipse.

Start by going to the Help menu and selecting Help Contents. There is a top-level item for

“OpenDDS Modeling SDK Guide” that contains all of the OpenDDS-specific content

describing the modeling and code generation activities.

 11.3 Developing Applications
In order to build an application using the OpenDDS Modeling SDK, one must understand a

few key concepts. The concepts concern:

1) The support library
2) Generated model code
3) Application code

 11.3.1 Modeling Support Library
The OpenDDS Modeling SDK includes a support library, found at

$DDS_ROOT/tools/modeling/codegen/model. This support library, when combined with the

code generated by the Modeling SDK, greatly reduces the amount of code needed to build

an OpenDDS application.

The support library is a C++ library which is used by an OpenDDS Modeling SDK

application. Two classes in the support library that most developers will need are the

Application and Service classes.

 11.3.1.1 The Application Class
The OpenDDS::Model::Application class takes care of initialization and finalization of the

OpenDDS library. It is required for any application using OpenDDS to instantiate a single

instance of the Application class, and further that the Application object not be

destroyed while communicating using OpenDDS.

The Application class initializes the factory used to create OpenDDS participants. This

factory requires the user-provided command line arguments. In order to provide them, the

Application object must be provided the same command line arguments.

1 7 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 11.3 Developing Applications

 11.3.1.2 The Service Class
The OpenDDS::Model::Service class is responsible for the creation of OpenDDS entities

described in an OpenDDS Modeling SDK model. Since the model can be generic, describing

a much broader domain than an individual application uses, the Service class uses lazy

instantiation to create OpenDDS entities.

In order to properly instantiate these entities, it must know:

• The relationships among the entities

• The transport configuration used by entities

 11.3.2 Generated Code
The OpenDDS Modeling SDK generates model-specific code for use by an OpenDDS

Modeling SDK application. Starting with a .codegen file (which refers to an .opendds model

file), the files described in Table 11-1. The process of generating code is documented in the

Eclipse help.

Table 11-1 Generated Files

File Name Description

<ModelName>.idl Data types from the model’s DataLib

<ModelName>_T.h C++ class from the model’s DcpsLib

<ModelName>_T.cpp C++ implementation of the model’s DcpsLib

<ModelName>.mpc MPC project file for the generated C++ library

<ModelName>.mpb MPC base project for use by the application

<ModelName>_paths.mpb MPC base project with paths, see section 11.3.3.7

<ModelName>Traits.h Transport configuration from the .codegen file

<ModelName>Traits.cpp Transport configuration from the .codegen file

 11.3.2.1 The DCPS Model Class
The DCPS library models relationships between DDS entities, including Topics,

DomainParticipants, Publishers, Subscribers, DataWriters and DataReaders, and their

corresponding Domains.

For each DCPS library in your model, the OpenDDS Modeling SDK generates a class named

after the DCPS library. This DCPS model class is named after the DCPS library, and is found

in the <ModelName>_T.h file in the code generation target directory.

The model class contains an inner class, named Elements, defining enumerated identifiers

for each DCPS entity modeled in the library and each type referenced by the library's

Topics. This Elements class contains enumeration definitions for each of:

1 7 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Modeling SDK

• DomainParticipants
• Types
• Topics
• Content Filtered Topics
• Multi Topics
• Publishers
• Subscribers
• Data Writers
• Data Readers

In addition, the DCPS model class captures the relationships between these entities. These

relationships are used by the Service class when instantiating DCPS entities.

 11.3.2.2 The Traits Class
Entities in a DCPS model reference their transport configuration by name. The Model

Customization tab of the Codegen file editor is used to define the transport configuration for

each name.

There can be more than one set of configurations defined for a specific code generation file.

These sets of configurations are grouped into instances, each identified by a name. Multiple

instances may be defined, representing different deployment scenarios for models using the

application.

For each of these instances, a Traits class is generated. The traits class provides the

transport configuration modeled in the Codegen editor for a specific transport configuration

name.

 11.3.2.3 The Service Typedef
The Service is a template which needs two parameters: (1) the entity model, in the DCPS

model Elements class, (2) transport configuration, in a Traits class. The OpenDDS

Modeling SDK generates one typedef for each combination of DCPS library and transport

configuration model instance. The typedef is named

<InstanceName><DCPSLibraryName>Type.

 11.3.2.4 Data Library Generated Code
From the data library, IDL is generated, which is processed by the IDL compilers. The IDL

compilers generate type support code, which is used to serialize and deserialize data types.

1 8 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 11.3 Developing Applications

 11.3.2.5 QoS Policy Library Generated Code
There are no specific compilation units generated from the QoS policy library. Instead, the

DCPS library stores the QoS policies of the entities it models. This QoS policy is later

queried by the Service class, which sets the QoS policy upon entity creation.

 11.3.3 Application Code Requirements

 11.3.3.1 Required headers
The application will need to include the Traits header, in addition to the Tcp.h header (for

static linking). These will include everything required to build a publishing application. Here

is the #include section of an example publishing application, MinimalPublisher.cpp.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"

 11.3.3.2 Exception Handling
It is recommended that Modeling SDK applications catch both CORBA::Exception objects

and std::exception objects.

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
 try {
 // Create and use OpenDDS Modeling SDK (see sections below)
 } catch (const CORBA::Exception& e) {
 // Handle exception and return non-zero
 } catch (const OpenDDS::DCPS::Transport::Exception& te) {
 // Handle exception and return non-zero
 } catch (const std::exception& ex) {
 // Handle exception and return non-zero
 }
 return 0;
}

 11.3.3.3 Instantiation
As stated above, an OpenDDS Modeling SDK application must create an

OpenDDS::Model::Application object for the duration of its lifetime. This Application

object, in turn, is passed to the constructor of the Service object specified by one of the

typedef declarations in the traits headers.

1 8 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Modeling SDK

The service is then used to create OpenDDS entities. The specific entity to create is

specified using one of the enumerated identifiers specified in the Elements class. The

Service provides this interface for entity creation:

DDS::DomainParticipant_var participant(Elements::Participants::Values part);
DDS::TopicDescription_var topic(Elements::Participants::Values part,
 Elements::Topics::Values topic);
DDS::Publisher_var publisher(Elements::Publishers::Values publisher);
DDS::Subscriber_var subscriber(Elements::Subscribers::Values subscriber);
DDS::DataWriter_var writer(Elements::DataWriters::Values writer);
DDS::DataReader_var reader(Elements::DataReaders::Values reader);

It is important to note that the service also creates any required intermediate entities, such

as DomainParticipants, Publishers, Subscribers, and Topics, when necessary.

 11.3.3.4 Publisher Code
Using the writer() method shown above, MinimalPublisher.cpp continues:

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
 try {
 OpenDDS::Model::Application application(argc, argv);
 MinimalLib::DefaultMinimalType model(application, argc, argv);

 using OpenDDS::Model::MinimalLib::Elements;
 DDS::DataWriter_var writer = model.writer(Elements::DataWriters::writer);

What remains is to narrow the DataWriter to a type-specific data writer, and send samples.

 data1::MessageDataWriter_var msg_writer =
 data1::MessageDataWriter::_narrow(writer);
 data1::Message message;
 // Populate message and send
 message.text = "Worst. Movie. Ever.";
 DDS::ReturnCode_t error = msg_writer->write(message, DDS::HANDLE_NIL);
 if (error != DDS::RETCODE_OK) {
 // Handle error
 }

In total our publishing application, MinimalPublisher.cpp, looks like this:

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
 try {
 OpenDDS::Model::Application application(argc, argv);
 MinimalLib::DefaultMinimalType model(application, argc, argv);

1 8 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 11.3 Developing Applications

 using OpenDDS::Model::MinimalLib::Elements;
 DDS::DataWriter_var writer = model.writer(Elements::DataWriters::writer);

 data1::MessageDataWriter_var msg_writer =
 data1::MessageDataWriter::_narrow(writer);
 data1::Message message;
 // Populate message and send
 message.text = "Worst. Movie. Ever.";
 DDS::ReturnCode_t error = msg_writer->write(message, DDS::HANDLE_NIL);
 if (error != DDS::RETCODE_OK) {
 // Handle error
 }
 } catch (const CORBA::Exception& e) {
 // Handle exception and return non-zero
 } catch (const std::exception& ex) {
 // Handle exception and return non-zero
 }
 return 0;
}

Note this minimal example ignores logging and synchronization, which are issues that are

not specific to the OpenDDS Modeling SDK.

 11.3.3.5 Subscriber Code
The subscriber code is much like the publisher. For simplicity, OpenDDS Modeling SDK

subscribers may want to take advantage of a base class for Reader Listeners, called

OpenDDS::Modeling::NullReaderListener. The NullReaderListener implements the

entire DataReaderListener interface and logs every callback.

Subscribers can create a listener by deriving a class from NullReaderListener and

overriding the interfaces of interest, for example on_data_available.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"
#include <model/NullReaderListener.h>

class ReaderListener : public OpenDDS::Model::NullReaderListener {
public:
 virtual void on_data_available(DDS::DataReader_ptr reader)
 ACE_THROW_SPEC((CORBA::SystemException)) {
 data1::MessageDataReader_var reader_i =
 data1::MessageDataReader::_narrow(reader);

 if (!reader_i) {
 // Handle error
 ACE_OS::exit(-1);
 }

 data1::Message msg;
 DDS::SampleInfo info;

 // Read until no more messages

1 8 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Modeling SDK

 while (true) {
 DDS::ReturnCode_t error = reader_i->take_next_sample(msg, info);
 if (error == DDS::RETCODE_OK) {
 if (info.valid_data) {
 std::cout << "Message: " << msg.text.in() << std::endl;
 }
 } else {
 if (error != DDS::RETCODE_NO_DATA) {
 // Handle error
 }
 break;
 }
 }
 }
};

In the main function, create a data reader from the service object:

 DDS::DataReader_var reader = model.reader(Elements::DataReaders::reader);

Naturally, the DataReaderListener must be associated with the data reader in order to get

its callbacks.

 DDS::DataReaderListener_var listener(new ReaderListener);
 reader->set_listener(listener, OpenDDS::DCPS::DEFAULT_STATUS_MASK);

The remaining subscriber code has the same requirements of any OpenDDS Modeling SDK

application, in that it must initialize the OpenDDS library through an

OpenDDS::Modeling::Application object, and create a Service object with the proper

DCPS model Elements class and traits class.

An example subscribing application, MinimalSubscriber.cpp, follows.

#ifdef ACE_AS_STATIC_LIBS
#include <dds/DCPS/transport/tcp/Tcp.h>
#endif

#include "model/MinimalTraits.h"
#include <model/NullReaderListener.h>

class ReaderListener : public OpenDDS::Model::NullReaderListener {
public:
 virtual void on_data_available(DDS::DataReader_ptr reader)
 ACE_THROW_SPEC((CORBA::SystemException)) {
 data1::MessageDataReader_var reader_i =
 data1::MessageDataReader::_narrow(reader);

 if (!reader_i) {
 // Handle error
 ACE_OS::exit(-1);
 }

 data1::Message msg;
 DDS::SampleInfo info;

1 8 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 11.3 Developing Applications

 // Read until no more messages
 while (true) {
 DDS::ReturnCode_t error = reader_i->take_next_sample(msg, info);
 if (error == DDS::RETCODE_OK) {
 if (info.valid_data) {
 std::cout << "Message: " << msg.text.in() << std::endl;
 }
 } else {
 if (error != DDS::RETCODE_NO_DATA) {
 // Handle error
 }
 break;
 }
 }
 }
};

int ACE_TMAIN(int argc, ACE_TCHAR* argv[])
{
 try {
 OpenDDS::Model::Application application(argc, argv);
 MinimalLib::DefaultMinimalType model(application, argc, argv);

 using OpenDDS::Model::MinimalLib::Elements;

 DDS::DataReader_var reader = model.reader(Elements::DataReaders::reader);

 DDS::DataReaderListener_var listener(new ReaderListener);
 reader->set_listener(listener, OpenDDS::DCPS::DEFAULT_STATUS_MASK);

 // Call on_data_available in case there are samples which are waiting
 listener->on_data_available(reader);

 // At this point the application can wait for an exteral “stop” indication
 // such as blocking until the user terminates the program with Ctrl-C.

 } catch (const CORBA::Exception& e) {
 e._tao_print_exception("Exception caught in main():");
 return -1;
 } catch (const std::exception& ex) {
 // Handle error
 return -1;
 }
 return 0;
}

 11.3.3.6 MPC Projects
In order to make use of the OpenDDS Modeling SDK support library, OpenDDS Modeling

SDK MPC projects should inherit from the dds_model project base. This is in addition to the

dcpsexe base from which non-Modeling SDK projects inherit.

project(*Publisher) : dcpsexe, dds_model {
 // project configuration
}

The generated model library will generate an MPC project file and base project file in the

target directory, and take care of building the model shared library. OpenDDS modeling

1 8 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Modeling SDK

applications must both (1) include the generated model library in their build and (2) ensure

their projects are built after the generated model libraries.

project(*Publisher) : dcpsexe, dds_model {
 // project configuration
 libs += Minimal
 after += Minimal
}

Both of these can be accomplished by inheriting from the model library's project base,

named after the model library.

project(*Publisher) : dcpsexe, dds_model, Minimal {
 // project configuration
}

Note that the Minimal.mpb file must now be found by MPC during project file creation. This

can be accomplished through the -include command line option.

Using either form, the MPC file must tell the build system where to look for the generated

model library.

project(*Publisher) : dcpsexe, dds_model, Minimal {
 // project configuration
 libpaths += model
}

This setting based upon what was provided to the Target Folder setting in the Codegen file

editor.

Finally, like any other MPC project, its source files must be included:

 Source_Files {
 MinimalPublisher.cpp
 }

The final MPC project looks like this for the publisher:

project(*Publisher) : dcpsexe, dds_model, Minimal {
 exename = publisher
 libpaths += model

 Source_Files {
 MinimalPublisher.cpp
 }
}

And similar for the subscriber:

project(*Subscriber) : dcpsexe, dds_model, Minimal {
 exename = subscriber
 libpaths += model

1 8 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 11.3 Developing Applications

 Source_Files {
 MinimalSubscriber.cpp
 }
}

 11.3.3.7 Dependencies Between Models
One final consideration — the generated model library could itself depend on other

generated model libraries. For example, there could be an external data type library which

is generated to a different directory.

This possibility could cause a great deal of maintenance of project files, as models change

their dependencies over time. To help overcome this burden, the generated model library

records the paths to all of its externally referenced model libraries in a separate MPB file

named <ModelName>_paths.mpb. Inheriting from this paths base project will inherit the

needed settings to include the dependent model as well.

Our full MPC file looks like this:

project(*Publisher) : dcpsexe, dds_model, Minimal, Minimal_paths {
 exename = publisher
 libpaths += model

 Source_Files {
 MinimalPublisher.cpp
 }
}

project(*Subscriber) : dcpsexe, dds_model, Minimal, Minimal_paths {
 exename = subscriber
 libpaths += model

 Source_Files {
 MinimalSubscriber.cpp
 }
}

1 8 7 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 12

Alternate Interfaces to Data

The DDS-DCPS approach to data transfer using synchronization of strongly-typed caches

(DataWriter and DataReader) is not appropriate for all applications. Therefore OpenDDS

provides two different alternate interface approaches which are described in this chapter.

These are not defined by OMG specifications and may change in future releases of

OpenDDS, including minor updates. The two approaches are:

• Recorder and Replayer

◦ These interfaces allow the application to create untyped stand-ins for

DataReaders and/or DataWriters

◦ Recorder can be used with the Dynamic Language Binding XTypes features (see

section 16.7 and below) to access typed data samples through a reflection-based

API

• Observer

◦ Observers play a role similar to the spec-defined Listeners (attached to

DataReaders and/or DataWriters). Unlike the Listeners, Observers don’t need

to interact with the DataReader/Writer caches to access the data samples.

 12.1 Recorder and Replayer
The Recorder feature of OpenDDS allows applications to record samples published on

arbitrary topics without any prior knowledge of the data type used by that topic.

1 8 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Alternate Interfaces to Data

Analogously, the Replayer feature allows these recorded samples to by re-published back

into the same or other topics. What makes these features different from other Data Readers

and Writers are their ability to work with any data type, even if unknown at application

build time. Effectively, the samples are treated as if each one contains an opaque byte

sequence.

The purpose of this section is to describe the public API for OpenDDS to enable the

recording/replaying use-case.

 12.1.1 API Structure
Two new user-visible classes (that behave somewhat like their DDS Entity counterparts) are

defined in the OpenDDS::DCPS namespace, along with the associated Listener interfaces.

Listeners may be optionally implemented by the application. The Recorder class acts

similarly to a DataReader and the Replayer class acts similarly to a DataWriter.

Both Recorder and Replayer make use of the underlying OpenDDS discovery and transport

libraries as if they were DataReader and DataWriter, respectively. Regular OpenDDS

applications in the domain will “see” the Recorder objects as if they were remote

DataReaders and Replayers as if they were DataWriters.

 12.1.2 Usage Model
The application creates any number of Recorders and Replayers as necessary. This could

be based on using the Built-In Topics to dynamically discover which topics are active in the

Domain. Creating a Recorder or Replayer requires the application to provide a topic name

and type name (as in DomainParticipant::create_topic()) and also the relevant QoS data

structures. The Recorder requires SubscriberQos and DataReaderQos whereas the

Replayer requires PublisherQos and DataWriterQos. These values are used in discovery's

reader/writer matching. See the section on QoS processing below for how the Recorder and

Replayer use QoS. Here is the code needed to create a recorder:

 OpenDDS::DCPS::Recorder_var recorder =
 service_participant->create_recorder(domain_participant,
 topic.in(),
 sub_qos,
 dr_qos,
 recorder_listener);

Data samples are made available to the application via the RecorderListener using a

simple “one callback per sample” model. The sample is delivered as an

OpenDDS::DCPS::RawDataSample object. This object includes the timestamp for that data

1 9 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 12.1 Recorder and Replayer

sample as well as the marshaled sample value. Here is a class definition for a user-defined

Recorder Listener.

class MessengerRecorderListener : public OpenDDS::DCPS::RecorderListener
{
public:
 MessengerRecorderListener();

 virtual void on_sample_data_received(OpenDDS::DCPS::Recorder*,
 const OpenDDS::DCPS::RawDataSample& sample);

 virtual void on_recorder_matched(OpenDDS::DCPS::Recorder*,
 const DDS::SubscriptionMatchedStatus& status);

};

The application can store the data wherever it sees fit (in memory, file system, database,

etc.). At any later time, the application can provide that same sample to a Replayer object

configured for the same topic. It’s the application’s responsibility to make sure the topic

types match. Here is an example call that replays a sample to all readers connected on a

replayer’s topic:

 replayer->write(sample);

Because the stored data is dependent on the definition of the data structure, it can’t be used

across different versions of OpenDDS or different versions of the IDL used by the OpenDDS

participants.

 12.1.3 QoS Processing
The lack of detailed knowledge about the data sample complicates the use of many normal

DDS QoS properties on the Replayer side. The properties can be divided into a few

categories:

• Supported

– Liveliness

– Time-Based Filter

– Lifespan

– Durability (transient local level, see details below)

– Presentation (topic level only)

– Transport Priority (pass-thru to transport)

• Unsupported

– Deadline (still used for reader/writer match)

– History

– Resource Limits

1 9 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Alternate Interfaces to Data

– Durability Service

– Ownership and Ownership Strength (still used for reader/writer match)

• Affects reader/writer matching and Built-In Topics but otherwise ignored

– Partition

– Reliability (still used by transport negotiation)

– Destination Order

– Latency Budget

– User/Group Data

 12.1.3.1 Durability details
On the Recorder side, transient local durability works just the same as any normal

DataReader. Durable data is received from matched DataWriters. On the Replayer side

there are some differences. As opposed to the normal DDS DataWriter, Replayer is not

caching/storing any data samples (they are simply sent to the transport). Because instances

are not known, storing data samples according to the usual History and Resource Limits

rules is not possible. Instead, transient local durability can be supported with a “pull” model

whereby the middleware invokes a method on the ReplayerListener when a new remote

DataReader is discovered. The application can then call a method on the Replayer with any

data samples that should be sent to that newly-joined DataReader. Determining which

samples these are is left to the application.

 12.1.4 Recorder With XTypes Dynamic Language
Binding
The Recorder class includes support for the Dynamic Language Binding from XTypes (see

section 16.7). Type information for each matched DataWriter (that supports XTypes

complete TypeObjects) is stored in the Recorder. Users can call

Recorder::get_dynamic_data, passing a RawDataSample to get back a DynamicData object

which includes type information – see DynamicData::type().

A tool called “inspect,” uses the Recorder and Dynamic Language Binding allow for the

printing of any type, so long as the topic name, type name, and domain ID are known. The

DataWriter must include code generation for complete TypeObjects. See

tools/inspect/Inspect.cpp for this tool’s source code. It can be used as a standalone tool or

an example for developing your own applications using these APIs.

1 9 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 12.2 Observer

 12.2 Observer
To observe the most important events happening within OpenDDS, applications can create

classes that derive from the Observer abstract base class (in dds/DCPS/Observer.h). The

design of Observer is intended to allow applications to have a single Observer object

observing many Entities, however this is flexible to allow many different use cases. The

following events can be observed:

• DataWriter/Reader enabled, deleted

• DataWriter/Reader QoS changed

• DataWriter/Reader peer associated, disassociated

• DataWriter sample sent

• DataReader sample received (enters the cache), read, taken

 12.2.1 Attaching Observers To Entities
Entity is the spec-defined base interface of the following types:

• DataWriter, DataReader

◦ As seen above in 12.2, the Observer events originate in the DataWriter and

DataReader Entities

• DomainParticipant, Publisher, Subscriber

◦ Among their other roles, these Entities act as containers (either directly or

indirectly) for DataWriters and DataReaders.

◦ If a smaller-scoped Entity (such as a DataWriter) has no Observer for the event

in question, its containing Entity (in this example, a Publisher) is checked for an

Observer.

• Topic

◦ Although it is an Entity, no Observer events are generated by Topics or Entities

they contain (since they don’t contain any Entities)

The class EntityImpl (in dds/DCPS/EntityImpl.h) is OpenDDS’s base class for all Entity

types. EntityImpl includes public methods for Observer registration: set_observer and

get_observer. These methods are not part of the IDL interfaces, so invoking them the

requires a cast to the implementation (Impl) of Entity.

 DDS::DataWriter_var dw = /* … */;

1 9 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Alternate Interfaces to Data

 EntityImpl* entity = dynamic_cast<EntityImpl*>(dw.in());

 Observer_rch observer = make_rch<MyObserver>();

 entity->set_observer(observer, Observer::e_SAMPLE_SENT);

Note that since the Observer class as an internal (not IDL) interface, it uses the “RCH”

(Reference Counted Handle) smart pointer classes. Observer itself inherits from RcObject,

and uses of Observer-derived classes should use the RcHandle template and its associated

functions, as in the example above. See dds/DCPS/RcHandle_T.h for details.

 12.2.2 Writing Observer-Derived Classes
The virtual methods in the Observer class are divided into 3 groups based on the general

category of events they observe:

1. Operations on the observed Entity itself

◦ on_enabled, on_deleted, on_qos_changed

◦ The only parameter to these methods is the Entity, so the Observer

implementation can use the public methods on the Entity.

2. Events relating to associating with remote matched endpoints

◦ on_associated, on_disassociated

◦ In addition to the Entity, the Observer implementation receives a GUID_t

structure which is the internal representation of remote Entity identity. The

GUID_t values from on_associated could be stored or logged to correlate them

with the values from on_disassociated.

3. Events relating to data samples moving through the system

◦ on_sample_sent, on_sample_received, on_sample_read, on_sample_taken

◦ In addition to the Entity, the Observer implementation receives an instance of

the Sample structure. The definition of this structure is nested within Observer.

See below for details.

 12.2.3 The Observer::Sample Structure
The Observer::Sample structure contains the following fields:

• instance and instance_state

◦ Describe the instance that this sample belongs to, using the spec-defined types

1 9 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 12.2 Observer

• timestamp and sequence_number

◦ Attributes of the sample itself: timestamp uses a spec-defined type whereas

sequence_number uses the OpenDDS internal type for DDSI-RTPS 64-bit

sequence numbers.

• data and data_dispatcher

◦ Since Observer is an un-typed interface, the contents of the data sample itself

are represented only as a void pointer

◦ Implementations that need to process this data can use the data_dispatcher

object to interpret it. See the class definition of ValueDispatcher in

dds/DCPS/ValueDispatcher.h for more details.

1 9 5 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 13

Safety Profile

 13.1 Overview
The Safety Profile configuration allows OpenDDS to be used in environments that have a

restricted set of operating system and standard library functions available and that require

dynamic memory allocation to occur only at system start-up.

OpenDDS Safety Profile (and the corresponding features in ACE) were developed for the

Open Group's FACE specification, edition 2.1 (http://www.opengroup.org/face/tech-

standard-2.1). It can be used along with the support for FACE Transport Services to create

FACE-conformant DDS applications, or it can be used by general DDS applications that are

not written to the FACE Transport Services APIs. This latter use-case is described by this

section of the developer's guide. For more information on the former use-case see the file

FACE/README.txt in the source distribution or contact us at sales@objectcomputing.com

(commercial support) or opendds-main@lists.sourceforge.net (community support).

 13.2 Safety Profile Subset of OpenDDS
The following features of OpenDDS are not available when it is configured for Safety Profile:

• DCPSInfoRepo and its associated libraries and tools

• Transport types: tcp, udp, multicast, shared memory

◦ The rtps_udp transport type is available (uses UDP unicast or multicast)

1 9 7 O p e n D D S D e v e l o p e r ’ s G u i d e

mailto:opendds-main@lists.sourceforge.net
mailto:sales@ociweb.com
http://www.opengroup.org/face/tech-standard-2.1
http://www.opengroup.org/face/tech-standard-2.1

 Safety Profile

• OpenDDS Monitor library and monitoring GUI

When developing the Safety Profile, the following DDS Compliance Profiles were disabled:

• content_subscription

• ownership_kind_exclusive

• object_model_profile

• persistence_profile

See Section 1.3.3 for more details on compliance profiles. It is possible that enabling any of

these compliance profiles in a Safety Profile build will result in a compile-time or run-time

error.

To build OpenDDS Safety Profile, pass the command line argument “--safety-profile” to the

configure script along with any other arguments needed for your platform or configuration.

When safety profile is enabled in the configure script, the four compliance profiles listed

above default to disabled. See section 1.3 and the INSTALL.md file in the source distribution

for more information about the configure script.

 13.3 Safety Profile Configurations of ACE
OpenDDS uses ACE as its platform abstraction library, and in OpenDDS's Safety Profile

configuration, one of the following safety profile configurations must be enabled in ACE:

• FACE Safety Base (always uses the memory pool)

• FACE Safety Extended with Memory Pool

• FACE Safety Extended with Standard C++ Dynamic Allocation

OpenDDS's configure script will automatically configure ACE. Pass the command line

argument “--safety-profile=base” to select the Safety Base profile. Otherwise a “--safety-

profile” (no equals sign) configuration will default to Safety Extended with Memory Pool.

The Safety Extended with Standard C++ Dynamic Allocation configuration is not

automatically generated by the configure script, but the file

“build/target/ACE_wrappers/ace/config.h” can be edited after it is generated by configure

(and before running make). Remove the macro definition for ACE_HAS_ALLOC_HOOKS to

disable the memory pool.

ACE's safety profile configurations have been tested on Linux and on LynxOS-178 version

2.3.2+patches. Other platforms may work too but may require additional configuration.

1 9 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 13.4 Run-time Configurable Options

 13.4 Run-time Configurable Options
The memory pool used by OpenDDS can be configured by setting values in the [common]

section of the configuration file. See section 7.2 and the pool_size and pool_granularity

rows of table Table 7-2.

 13.5 Running ACE and OpenDDS Tests
After configuring and building OpenDDS Safety Profile, note that there are two sub-

directories of the top level that each contain some binary artifacts:

• build/host has the build-time code generators tao_idl and opendds_idl

• build/target has the run-time libraries for safety profile ACE and OpenDDS and the

OpenDDS tests

Therefore, testing needs to be relative to the build/target sub-directory. Source-in the

generated file build/target/setenv.sh to get all of the needed environment variables.

ACE tests are not built by default, but once this environment is set up all it takes to build

them is generating makefiles and running make:

1. cd $ACE_ROOT/tests

2. $ACE_ROOT/bin/mwc.pl -type gnuace

3. make

Run ACE tests by changing to the $ACE_ROOT/tests directory and using run_test.pl. Pass

any “-Config XYZ” options required for your configuration (use run_test.pl -h to see the

available Config options).

Run OpenDDS tests by changing to the $DDS_ROOT and using bin/auto_run_tests.pl. Pass

“-Config OPENDDS_SAFETY_PROFILE”, “-Config SAFETY_BASE” (if using safety base), “-

Config RTPS”, and -Config options corresponding to each disabled compliance profile, by

default: “-Config DDS_NO_OBJECT_MODEL_PROFILE -Config

DDS_NO_OWNERSHIP_KIND_EXCLUSIVE -Config DDS_NO_PERSISTENCE_PROFILE -

Config DDS_NO_CONTENT_SUBSCRIPTION”.

Alternatively, an individual test can be run using run_test.pl from that test's directory. Pass

the same set of -Config options to run_test.pl.

1 9 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 Safety Profile

 13.6 Using the Memory Pool in
Applications
When the Memory Pool is enabled at build time, all dynamic allocations made by code in

OpenDDS or in ACE (methods invoked by OpenDDS) go through the pool. Since the pool is

a general purpose dynamic allocator, it may be desirable for application code to use the pool

too. Since these APIs are internal to OpenDDS, they may change in future releases.

The class OpenDDS::DCPS::MemoryPool (dds/DCPS/MemoryPool.h) contains the pool

implementation. However, most client code shouldn't interact directly with it. The class

SafetyProfilePool (dds/DCPS/SafetyProfilePool.h) adapts the pool to the ACE_Allocator

interface. PoolAllocator<T> (PoolAllocator.h) adapts the pool to the C++ Allocator concept

(C++03). Since the PoolAllocator is stateless, it depends on the ACE_Allocator's singleton.

When OpenDDS is configured with the memory pool, ACE_Allocator's singleton instance will

point to an object of class SafetyProfilePool.

Application code that makes use of C++ Standard Library classes can either use

PoolAllocator directly, or make use of the macros defined in PoolAllocator.h (for example

OPENDDS_STRING).

Application code that allocates raw (untyped) buffers of dynamic memory can use

SafetyProfilePool either directly or via the ACE_Allocator::instance() singleton.

Application code that allocates objects from the heap can use the PoolAllocator<T>

template.

Classes written by the application developer can derive from PoolAllocationBase (see

PoolAllocationBase.h) to inherit class-scoped operators new and delete, thus redirecting all

dynamic allocation of these classes to the pool.

2 0 0 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 14

DDS Security

 14.1 Building OpenDDS with Security
Enabled
Prior to utilizing DDS Security, OpenDDS must be built to include security elements into the

resulting libraries. The following instructions show how this is to be completed on various

platforms.

 14.1.1 Prerequisites
OpenDDS includes an implementation of the OMG DDS Security 1.1 specification. Building

OpenDDS with security enabled requires the following dependencies:

 1. Xerces-C++ v3.x

 2. OpenSSL v1.0.2+, v1.1, or v3.0.1+ (1.1 is preferred)

 3. Google Test (only required if building OpenDDS tests)

(A) If you are using OpenDDS from a git repository, Google Test is provided as a git

submodule. Make sure to enable submodules with the --recursive option to git

clone.

 4. CMake (required if building OpenDDS tests and building Google Test and other

dependencies from source).

2 0 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

General Notes on Using OpenDDS Configure Script with DDS

Security

 1. DDS Security is disabled by default, enable it with --security

 2. OpenDDS tests are disabled by default, enable them with --tests

(A) Disabling tests skips the Google Test and CMake dependencies

(B) If tests are enabled, the configure script can run CMake and build Google Test

 14.1.2 Building OpenDDS With Security On Windows
Using Microsoft vcpkg

Microsoft vcpkg is a “C++ Library Manager for Windows, Linux, and macOS” which helps

developers build/install dependencies. Although it is cross-platform, this guide only

discusses vcpkg on Windows.

As of this writing, vcpkg is only supported on Visual Studio 2015 Update 3 and later

versions; if using an earlier version of Visual Studio, skip down to the manual setup

instructions later in this section.

1) If OpenDDS tests will be built, install CMake or put the one that comes with Visual

Studio on the PATH (see Common7\IDE\CommonExtensions\Microsoft\CMake).

2) If you need to obtain and install vcpkg, navigate to https://github.com/Microsoft/vcpkg

and follow the instructions to obtain vcpkg by cloning the repository and bootstrapping

it.

3) Fetch and build the dependencies; by default, vcpkg targets x86 so be sure to specify

the x64 target if required by specifying it when invoking vcpkg install, as shown here:

vcpkg install openssl:x64-windows xerces-c:x64-windows

4) Configure OpenDDS by passing the openssl and xerces3 switches. As a convenience, it

can be helpful to set an environment variable to store the path since it is the same

location for both dependencies.

set VCPKG_INSTALL=c:\path\to\vcpkg\installed\x64-windows

configure --security --openssl=%VCPKG_INSTALL% --xerces3=%VCPKG_INSTALL%

5) Compile with msbuild or by launching Visual Studio from this command prompt so it

inherits the correct environment variables and building from there.

2 0 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.1 Building OpenDDS with Security Enabled

msbuild /m DDS_TAOv2_all.sln

Manual Build

Note: for all of the build steps listed here, check that each package targets the same

architecture (either 32-bit or 64-bit) by compiling all dependencies within the same type of

Developer Command Prompt.

Compiling OpenSSL

(see: https://wiki.openssl.org/index.php/Compilation_and_Installation#Windows)

 1. Install Perl and add it to the Path environment variable. For this guide, ActiveState

is used.

 2. Install Netwide Assembler (NASM). Click through the latest stable release and there

is a win32 and win64 directory containing executable installers. The installer does not

update the Path environment variable, so a manual entry (%LOCALAPPDATA%\bin\NASM)

is necessary.

 3. Download the required version of OpenSSL by cloning the repository.

 4. Open a Developer Command Prompt (32-bit or 64-bit depending on the desired

target architecture) and change into the freshly cloned openssl directory.

 5. Run the configure script and specify a required architecture (perl Configure VC-

WIN32 or perl Configure VC-WIN64A).

 6. Run nmake.

 7. Run nmake install.

Note: if the default OpenSSL location is desired, which will be searched by OpenDDS,

open the Developer Command Prompt as an administrator before running the install. It

will write to “C:\Program Files” or “C:\Program Files (x86)” depending on the

architecture.

Compiling Xerces-C++ 3

(see: https://xerces.apache.org/xerces-c/build-3.html)

1. Download/extract the Xerces source files.

2. Create a cmake build directory and change into it (from within the Xerces

source tree).

mkdir build

2 0 3 O p e n D D S D e v e l o p e r ’ s G u i d e

https://xerces.apache.org/xerces-c/build-3.html
https://wiki.openssl.org/index.php/Compilation_and_Installation#Windows

 DDS Security

cd build

3. Run cmake with the appropriate generator. In this case Visual Studio 2017 with

64-bit is being used so:

cmake -G "Visual Studio 15 2017 Win64" ..

4. Run cmake again with the build switch and install target (this should be done in

an administrator command-prompt to install in the default location as mentioned

above).

cmake --build . --target install

Configuring and Building OpenDDS:

 1. Change into the OpenDDS root folder and run configure with security enabled.

 A) If the default location was used for OpenSSL and Xerces, configure should

automatically find the dependencies:

configure --security

 B) If a different location was used (assuming environment variables NEW_SSL_ROOT

and NEW_XERCES_ROOT point to their respective library directories):

configure --security --openssl=%NEW_SSL_ROOT%

 --xerces3=%NEW_XERCES_ROOT%

 2. Compile with msbuild (or by opening the solution file in Visual Studio and building

from there).

msbuild /m DDS_TAOv2_all.sln

 14.1.3 Building OpenDDS With Security On Linux
Xerces-C++ and OpenSSL may be installed using the system package manager, or built

from source. If using the system package manager (that is, headers can be found under

/usr/include), invoke the configure script with the --security option. If Xerces-C++ and/or

OpenSSL are built from source or installed in a custom location, also provide the --

xerces3=/foo and --openssl=/bar command line options.

 14.1.4 Building OpenDDS With Security On MacOS
Xerces-C++ and OpenSSL may be installed using homebrew or another developer-focused

package manager, or built from source. The instructions above for Linux also apply to

2 0 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.1 Building OpenDDS with Security Enabled

macOS but the package manager will not install directly in /usr so make sure to specify the

library locations to the configure script.

 14.1.5 Building OpenDDS With Security For Android
See the docs/android.md file included in the OpenDDS source code.

 14.2 Architecture of the DDS Security
Specification
The DDS Security specification defines plugin APIs for Authentication, Access Control, and

Cryptographic operations. These APIs provide a level of abstraction for DDS

implementations as well as allowing for future extensibility and version control.

Additionally, the specification defines Built-In implementations of each of these plugins,

which allows for a baseline of functionality and interoperability between DDS

implementations. OpenDDS implements these Built-In plugins, and this document assumes

that the Built-In plugins are being used. Developers using OpenDDS may also implement

their own custom plugins, but those efforts are well beyond the scope of this document.

 14.3 Terms and Background Info
DDS Security uses current industry standards and best-practices in security. As such, this

document makes use of several security concepts which may warrant additional research by

OpenDDS users.

Term Group References

Public Key

Cryptography

(including Private

Keys)

• https://en.wikipedia.org/wiki/Public-key_cryptography

• RSA – https://en.wikipedia.org/wiki/RSA_(algorithm)

• Elliptic Curve Cryptography -

https://en.wikipedia.org/wiki/Elliptic_curve_cryptography

Public Key

Certificate

• https://en.wikipedia.org/wiki/Public_key_certificate

• Certificate Authority – https://en.wikipedia.org/wiki/Certificate_authority

• X.509 – https://en.wikipedia.org/wiki/X.509

• PEM - https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

Signed Documents • https://en.wikipedia.org/wiki/Digital_signature

Table 14-1

2 0 5 O p e n D D S D e v e l o p e r ’ s G u i d e

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/X.509
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography
https://en.wikipedia.org/wiki/RSA_(algorithm)
https://en.wikipedia.org/wiki/Public-key_cryptography

 DDS Security

 14.4 Required DDS Security Artifacts

 14.4.1 Per-Domain Artifacts
These are shared by all participants within the secured DDS Domain:

• Identity CA Certificate

• Permissions CA Certificate (may be same as Identity CA Certificate)

• Governance Document

- Signed by Permissions CA using its private key

 14.4.2 Per-Participant Artifacts
These are specific to the individual Domain Participants within the DDS Domain:

• Identity Certificate and its Private Key

- Issued by Identity CA (or a CA that it authorized to act on its behalf)

• Permissions Document

- Contains a “subject name” which matches the participant certificate’s Subject

- Signed by Permissions CA using its private key

 14.5 Required OpenDDS Configuration
The following configuration steps are required to enable OpenDDS Security features:

 1. Select RTPS Discovery and the RTPS-UDP Transport; because DDS Security only

works with these configurations, both must be specified for any security-enabled

participant.

 2. Enable OpenDDS security-features, which can be done two ways:

(A) Via API: “TheServiceParticipant->set_security(true);” or

(B) Via config file: “DCPSSecurity=1” in the [common] section.

2 0 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.5 Required OpenDDS Configuration

 14.5.1 DDS Security Configuration Via
PropertyQosPolicy
When the application creates a DomainParticipant object, the DomainParticipantQos

passed to the create_participant() method now contains a PropertyQosPolicy object

which has a sequence of name-value pairs. The following properties must be included to

enable security. Except where noted, these values take the form of a URI starting with

either the scheme “file:” followed by a filesystem path (absolute or relative) or the scheme

“data:” followed by the literal data.

Name Value Notes

dds.sec.auth.identity_ca Certificate PEM file Can be the same as

permissions_ca

dds.sec.access.permissions_ca Certificate PEM file Can be the same as identity_ca

dds.sec.access.governance Signed XML (.p7s) Signed by permissions_ca

dds.sec.auth.identity_certificate Certificate PEM file Signed by identity_ca

dds.sec.auth.private_key Private Key PEM file Private key for

identity_certificate

dds.sec.auth.password Private Key Password

(not a URI)

Optional, Base64 encoded

dds.sec.access.permissions Signed XML (.p7s) Signed by permissions_ca

Table 14-2

 14.5.2 PropertyQosPolicy Example Code
Below is an example of code that sets the DDS Participant QoS’s PropertyQoSPolicy in order

to configure DDS Security.

// DDS Security artifact file locations

const char auth_ca_file[] = "file:identity_ca_cert.pem";

const char perm_ca_file[] = "file:permissions_ca_cert.pem";

const char id_cert_file[] = "file:test_participant_01_cert.pem";

const char id_key_file[] = "file:test_participant_01_private_key.pem";

const char governance_file[] = "file:governance_signed.p7s";

const char permissions_file[] = "file:permissions_01_signed.p7s";

// DDS Security property names

const char DDSSEC_PROP_IDENTITY_CA[] = "dds.sec.auth.identity_ca";

const char DDSSEC_PROP_IDENTITY_CERT[] = "dds.sec.auth.identity_certificate";

const char DDSSEC_PROP_IDENTITY_PRIVKEY[] = "dds.sec.auth.private_key";

2 0 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

const char DDSSEC_PROP_PERM_CA[] = "dds.sec.access.permissions_ca";

const char DDSSEC_PROP_PERM_GOV_DOC[] = "dds.sec.access.governance";

const char DDSSEC_PROP_PERM_DOC[] = "dds.sec.access.permissions";

void append(DDS::PropertySeq& props, const char* name, const char* value)

{

 const DDS::Property_t prop = {name, value, false /*propagate*/};

 const unsigned int len = props.length();

 props.length(len + 1);

 props[len] = prop;

}

int main(int argc, char* argv[])

{

 DDS::DomainParticipantFactory_var dpf =

 TheParticipantFactoryWithArgs(argc, argv);

 // Start with the default Participant QoS

 DDS::DomainParticipantQos part_qos;

 dpf->get_default_participant_qos(part_qos);

 // Add properties required by DDS Security

 DDS::PropertySeq& props = part_qos.property.value;

 append(props, DDSSEC_PROP_IDENTITY_CA, auth_ca_file);

 append(props, DDSSEC_PROP_IDENTITY_CERT, id_cert_file);

 append(props, DDSSEC_PROP_IDENTITY_PRIVKEY, id_key_file);

 append(props, DDSSEC_PROP_PERM_CA, perm_ca_file);

 append(props, DDSSEC_PROP_PERM_GOV_DOC, governance_file);

 append(props, DDSSEC_PROP_PERM_DOC, permissions_file);

 // Create the participant

 participant = dpf->create_participant(4, // DomainID

 part_qos,

 0, // No listener

 OpenDDS::DCPS::DEFAULT_STATUS_MASK);

…

2 0 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.5 Required OpenDDS Configuration

 14.5.3 Identity Certificates And Certificate
Authorities
All certificate inputs to OpenDDS, including self-signed CA certificates, are expected to be

an X.509 v3 certificate in PEM format for either a 2048-bit RSA key or a 256-bit Elliptic

Curve key (using the prime256v1 curve).

 14.5.4 Identity, Permissions, And Subject Names
The “subject_name” element for a signed permissions XML document must match the

“Subject:” field provided by the accompanying Identity Certificate which is transmitted

during participant discovery, authentication, and authorization. This ensures that the

permissions granted by the Permissions CA do, in fact, correspond to the identity provided.

 14.5.5 Examples In The OpenDDS Source Code
Repository
Examples to demonstrate how the DDS Security features are used with OpenDDS can be

found in the OpenDDS GitHub repository found here:

OpenDDS GitHub - https://github.com/objectcomputing/OpenDDS

The following table describes the various examples and where to find them in the source

tree.

Example Source Location

C++ application that configures

security QoS policies via

command-line parameters

tests/DCPS/Messenger/publisher.cpp

Identity CA Certificate (along

with private key)

tests/security/certs/identity/identity_ca_cert.pem

Permissions CA Certificate (along

with private key)

tests/security/certs/permissions/permissions_ca_cert.pem

Participant Identity Certificate

(along with private key)

tests/security/certs/identity/test_participant_01_cert.pem

Governance XML Document

(alongside signed document)

tests/DCPS/Messenger/governance.xml

Permissions XML Document

(alongside signed document)

tests/DCPS/Messenger/permissions_1.xml

Table 14-3

2 0 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

 14.5.6 Using OpenSSL Utilities For OpenDDS
To generate certificates using the openssl command, a configuration file "openssl.cnf" is

required (see below for example commands). Before proceeding, it may be helpful to review

OpenSSL’s manpages to get help with the file format. In particular, configuration file format

and ca command’s documentation and configuration file options.

An example OpenSSL CA-Config file used in OpenDDS testing can be found here:

https://github.com/objectcomputing/OpenDDS/blob/master/tests/security/certs/identity/

identity_ca_openssl.cnf

 14.5.6.1 Creating Self-Signed Certificate Authorities
Generate a self-signed 2048-bit RSA CA:

openssl genrsa -out ca_key.pem 2048

openssl req -config openssl.cnf -new -key ca_key.pem -out ca.csr

openssl x509 -req -days 3650 -in ca.csr -signkey ca_key.pem -out ca_cert.pem

Generate self-signed 256-bit Elliptic Curve CA:

openssl ecparam -name prime256v1 -genkey -out ca_key.pem

openssl req -config openssl.cnf -new -key ca_key.pem -out ca.csr

openssl x509 -req -days 3650 -in ca.csr -signkey ca_key.pem -out ca_cert.pem

 14.5.6.2 Creating Signed Certificates with an Existing CA
Generate a signed 2048-bit RSA certificate:

openssl genrsa -out cert_1_key.pem 2048

openssl req -new -key cert_1_key.pem -out cert_1.csr

openssl ca -config openssl.cnf -days 3650 -in cert_1.csr -out cert_1.pem

Generate a signed 256-bit Elliptic Curve certificate:

openssl ecparam -name prime256v1 -genkey -out cert_2_key.pem

openssl req -new -key cert_2_key.pem -out cert_2.csr

openssl ca -config openssl.cnf -days 3650 -in cert_2.csr -out cert_2.pem

2 1 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.5 Required OpenDDS Configuration

 14.5.6.3 Signing Documents with SMIME
Sign a document using existing CA & CA private key:

openssl smime -sign -in doc.xml -text -out doc_signed.p7s -signer ca_cert.pem

-inkey ca_private_key.pem

 14.6 Domain Governance Document
The signed governance document is used by the DDS Security built-in access control plugin

in order to determine both per-domain and per-topic security configuration options for

specific domains. For full details regarding the content of the governance document, see the

OMG DDS Security specification section 9.4.1.2.

 14.6.1 Global Governance Model
It’s worth noting that the DDS Security Model expects the governance document to be

globally shared by all participants making use of the relevant domains described within the

governance document. Even if this is not the case, the local participant will verify incoming

authentication and access control requests as if the remote participant shared the same

governance document and accept or reject the requests accordingly.

 14.6.2 Key Governance Elements
Domain Id Set

A list of domain ids and/or domain id ranges of domains impacted by the current domain

rule. The syntax is the same as the domain id set found in the governance document.

The set is made up of <id> tags or <id_range> tags. An <id> tag simply contains the

domain id that are part of the set. An <id_range> tag can be used to add multiple ids at

once. It must contain a <min> tag to say where the range starts and may also have a

<max> tag to say where the range ends. If the <max> tag is omitted then the set includes

all valid domain ids starting at <min>.

If the domain rule or permissions grant should to apply to all domains, use the following:

<domains>

 <id_range><min>0</min></id_range>

</domains>

If there’s a need to be selective about what domains are chosen, here’s an annotated

example:

2 1 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

<domains>

 <id>2</id>

 <id_range><min>4</min><max>6</max></id_range> <!-- 4, 5, 6 -->

 <id_range><min>10</min></id_range> <!-- 10 and onward -->

</domains>

Governance Configuration Types

The following types and values are used in configuring both per-domain and per-topic

security configuration options. We summarize them here to simplify discussion of the

configuration options where they’re used, found below.

Boolean

A boolean value indicating whether a configuration option is enabled or not. Recognized

values are: TRUE/true/1 or FALSE/false/0.

ProtectionKind

The method used to protect domain data (message signatures or message encryption) along

with the ability to include origin authentication for either protection kind. Currently,

OpenDDS doesn’t implement origin authentication. So while the

"_WITH_ORIGIN_AUTHENTICATION" options are recognized, the underlying configuration

is unsupported. Recognized values are: {NONE, SIGN, ENCRYPT,

SIGN_WITH_ORIGIN_AUTHENTICATION, or ENCRYPT_WITH_ORIGIN_AUTHENTICATION}

BasicProtectionKind

The method used to protect domain data (message signatures or message encryption).

Recognized values are: {NONE, SIGN, or ENCRYPT}

FnmatchExpression

A wildcard-capable string used to match topic names. Recognized values will conform to

POSIX fnmatch() function as specified in POSIX 1003.2-1992, Section B.6.

 14.6.3 Domain Rule Configuration Options
The following XML elements are used to configure domain participant behaviors.

Element Type Description

<allow_unauthenticated_participants> Boolean A boolean value which determines

whether to allow unauthenticated

participants for the current domain

2 1 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.6 Domain Governance Document

Element Type Description

rule

<enable_join_access_control> Boolean A boolean value which determines

whether to enforce domain access

controls for authenticated

participants

<discovery_protection_kind> ProtectionKind The discovery protection element

specifies the protection kind used for

the built-in DataWriter(s) and

DataReader(s) used for secure

endpoint discovery messages

<liveliness_protection_kind> ProtectionKind The liveliness protection element

specifies the protection kind used for

the built-in DataWriter and

DataReader used for secure liveliness

messages

<rtps_protection_kind> ProtectionKind Indicate the desired level of

protection for the whole RTPS

message. Very little RTPS data exists

outside the “metadata protection”

envelope (see topic rule configuration

options), and so for most use cases

topic-level “data protection” or

“metadata protection” can be

combined with discovery protection

and/or liveliness protection in order to

secure domain data adequately. One

item that is not secured by "metadata

protection" is the timestamp, since

RTPS uses a separate InfoTimestamp

submessage for this. The timestamp

can be secured by using

<rtps_protection_kind>

Table 14-4

 14.6.4 Topic Rule Configuration Options
The following XML elements are used to configure topic endpoint behaviors:

<topic_expression> : FnmatchExpression

2 1 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

A wildcard-capable string used to match topic names. See description above. A “default”

rule to catch all previously unmatched topics can be made with:

<topic_expression>*</topic_expression>

<enable_discovery_protection> : Boolean

Enables the use of secure discovery protections for matching user topic announcements.

<enable_read_access_control> : Boolean

Enables the use of access control protections for matching user topic DataReaders.

<enable_write_access_control> : Boolean

Enables the use of access control protections for matching user topic DataWriters.

<metadata_protection_kind> : ProtectionKind

Specifies the protection kind used for the RTPS SubMessages sent by any DataWriter and

DataReader whose associated Topic name matches the rule’s topic expression.

<data_protection_kind> : BasicProtectionKind

Specifies the basic protection kind used for the RTPS SerializedPayload SubMessage

element sent by any DataWriter whose associated Topic name matches the rule’s topic

expression.

 14.6.5 Governance XML Example
<?xml version="1.0" encoding="utf-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-
Security/20170801/omg_shared_ca_domain_governance.xsd">

 <domain_access_rules>

 <domain_rule>

 <domains>

 <id>0</id>

 <id_range>

 <min>10</min>

 <max>20</max>

 </id_range>

 </domains>

<allow_unauthenticated_participants>FALSE</allow_unauthenticated_participants>

 <enable_join_access_control>TRUE</enable_join_access_control>

 <rtps_protection_kind>SIGN</rtps_protection_kind>

2 1 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.6 Domain Governance Document

 <discovery_protection_kind>ENCRYPT</discovery_protection_kind>

 <liveliness_protection_kind>SIGN</liveliness_protection_kind>

 <topic_access_rules>

 <topic_rule>

 <topic_expression>Square*</topic_expression>

 <enable_discovery_protection>TRUE</enable_discovery_protection>

 <enable_read_access_control>TRUE</enable_read_access_control>

 <enable_write_access_control>TRUE</enable_write_access_control>

 <metadata_protection_kind>ENCRYPT</metadata_protection_kind>

 <data_protection_kind>ENCRYPT</data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>Circle</topic_expression>

 <enable_discovery_protection>TRUE</enable_discovery_protection>

 <enable_read_access_control>FALSE</enable_read_access_control>

 <enable_write_access_control>TRUE</enable_write_access_control>

 <metadata_protection_kind>ENCRYPT</metadata_protection_kind>

 <data_protection_kind>ENCRYPT</data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>Triangle</topic_expression>

 <enable_discovery_protection>FALSE</enable_discovery_protection>

 <enable_read_access_control>FALSE</enable_read_access_control>

 <enable_write_access_control>TRUE</enable_write_access_control>

 <metadata_protection_kind>NONE</metadata_protection_kind>

 <data_protection_kind>NONE</data_protection_kind>

 </topic_rule>

 <topic_rule>

 <topic_expression>*</topic_expression>

 <enable_discovery_protection>TRUE</enable_discovery_protection>

 <enable_read_access_control>TRUE</enable_read_access_control>

 <enable_write_access_control>TRUE</enable_write_access_control>

 <metadata_protection_kind>ENCRYPT</metadata_protection_kind>

 <data_protection_kind>ENCRYPT</data_protection_kind>

 </topic_rule>

 </topic_access_rules>

 </domain_rule>

2 1 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

 </domain_access_rules>

</dds>

 14.7 Participant Permissions Document
The signed permissions document is used by the DDS Security built-in access control plugin

in order to determine participant permissions to join domains and to create endpoints for

reading, writing, and relaying domain data. For full details regarding the content of the

permissions document, see the OMG DDS Security specification section 9.4.1.3.

 14.7.1 Key Permissions Elements
Grants

Each permissions file consists of one or more permissions grants. Each grant bestows

access control privileges to a single subject name for a limited validity period.

Subject Name

Each grant’s subject name is intended to match against a corresponding identity

certificate’s “subject” field. In order for permissions checks to successfully validate for both

local and remote participants, the supplied identity certificate subject name must match the

subject name of one of the grants included in the permissions file.

Validity

Each grant’s validity section contains a start date and time (<not_before>) and an end date

and time (<not_after>) to indicate the period of time during which the grant is valid.

The format of the date and time, which is like ISO-8601, must take one of the following

forms:

1) YYYY-MM-DDThh:mm:ss

◦ Example: 2020-10-26T22:45:30

2) YYYY-MM-DDThh:mm:ssZ

◦ Example: 2020-10-26T22:45:30Z

3) YYYY-MM-DDThh:mm:ss+hh:mm

◦ Example: 2020-10-26T23:45:30+01:00

4) YYYY-MM-DDThh:mm:ss-hh:mm

◦ Example: 2020-10-26T16:45:30-06:00

2 1 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.7 Participant Permissions Document

All fields shown must include leading zeros to fill out their full width, as shown in the

examples. YYYY-MM-DD is the date and hh:mm:ss is the time in 24-hour format. The date

and time must be able to be represented by the time_t (C standard library) type of the

system. The seconds field can also include a variable length fractional part, like 00.0 or

01.234, but it will be ignored because time_t represents a whole number of seconds.

Examples #1 and #2 are both interpreted to be using UTC. To put the date and time in a

local time, a time zone offset can to be added that says how far the local timezone is ahead

of (using ‘+’ as in example #3) or behind (using ‘-’ as in example #4) UTC at that date and

time.

Allow / Deny Rules

Grants will contain one or more allow / deny rules to indicate which privileges are being

applied. When verifying that a particular operation is allowed by the supplied grant, rules

are checked in the order they appear in the file. If the domain, partition, and (when

implemented) data tags for an applicable topic rule match the operation being verified, the

rule is applied (either allow or deny). Otherwise, the next rule is considered. Special Note: If

a grant contains any allow rule that matches a given domain (even one with no publish /

subscribe / relay rules), the grant may be used to join a domain with join access controls

enabled.

Default Rule

The default rule is the rule applied if none of the grant’s allow rules or deny rules match the

incoming operation to be verified.

Domain Id Set

Every allow or deny rule must contain a set of domain ids to which it applies. The syntax is

the same as the domain id set found in the governance document. See section 14.6.2 for

details.

Publish / Subscribe / Relay Rules (PSR rules)

Every allow or deny rule may optionally contain a list of publish, subscribe, or relay rules

bestowing privileges to publish, subscribe, or relay data (respectively). Each rule applies to

a collection of topics in a set of partitions with a particular set of data tags. As such, each

rule must then meet these three conditions (topics, partitions, and (when implemented) data

tags) in order to apply to a given operation. These conditions are governed by their relevant

subsection, but the exact meaning and default values will vary depending on the both the

PSR type (publish, subscribe, relay) as well as whether this is an allow rule or a deny rule.

Each condition is summarized below, but please refer to the OMG DDS Security

specification for full details. OpenDDS does not currently support relay-only behavior and

2 1 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

consequently ignores allow and deny relay rules for both local and remote entities.

Additionally, OpenDDS does not currently support data tags, and so the data tag condition

applied is always the “default” behavior described below.

Topic List

The list of topics and/or topic expressions for which a rule applies. Topic names and

expressions are matched using POSIX fnmatch() rules and syntax. If the triggering

operation matches any of the topics listed, the topic condition is met. The topic section must

always be present for a PSR rule, so there there is no default behavior.

Partition List

The partitions list contains the set of partition names for which the parent PSR rule applies.

Similarly to topics, partition names and expressions are matched using POSIX fnmatch()

rules and syntax. For “allow” PSR rules, the DDS entity of the associated triggering

operation must be using a strict subset of the partitions listed for the rule to apply. When no

partition list is given for an “allow” PSR rule, the “empty string” partition is used as the

default value. For “deny” PSR rules, the rule will apply if the associated DDS entity is using

any of the partitions listed. When no partition list is given for a “deny” PSR rule, the

wildcard expression “*” is used as the default value.

Data Tags List

Data tags are an optional part of the DDS Security specification and are not currently

implemented by OpenDDS. If they were implemented, the condition criteria for data tags

would be similar to partitions. For “allow” PSR rules, the DDS entity of the associated

triggering operation must be using a strict subset of the data tags listed for the rule to

apply. When no data tag list is given for an “allow” PSR rule, the empty set of data tags is

used as the default value. For “deny” PSR rules, the rule will apply if the associated DDS

entity is using any of the data tags listed. When no data tag list is given for a “deny” PSR

rule, the set of “all possible tags” is used as the default value.

 14.7.2 Permissions XML Example
<?xml version="1.0" encoding="UTF-8"?>

<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.omg.org/spec/DDS-Security/20170801/
omg_shared_ca_permissions.xsd">

 <permissions>

 <grant name="ShapesPermission">

 <subject_name>emailAddress=cto@acme.com, CN=DDS Shapes Demo, OU=CTO
Office, O=ACME Inc., L=Sunnyvale, ST=CA, C=US</subject_name>

2 1 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 14.7 Participant Permissions Document

 <validity>

 <not_before>2015-10-26T00:00:00</not_before>

 <not_after>2020-10-26T22:45:30</not_after>

 </validity>

 <allow_rule>

 <domains>

 <id>0</id>

 </domains>

 </allow_rule>

 <deny_rule>

 <domains>

 <id>0</id>

 </domains>

 <publish>

 <topics>

 <topic>Circle1</topic>

 </topics>

 </publish>

 <publish>

 <topics>

 <topic>Square</topic>

 </topics>

 <partitions>

 <partition>A_partition</partition>

 </partitions>

 </publish>

 <subscribe>

 <topics>

 <topic>Square1</topic>

 </topics>

 </subscribe>

 <subscribe>

 <topics>

 <topic>Tr*</topic>

 </topics>

 <partitions>

 <partition>P1*</partition>

2 1 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 DDS Security

 </partitions>

 </subscribe>

 </deny_rule>

 <default>DENY</default>

 </grant>

 </permissions>

</dds>

 14.8 DDS Security Implementation Status
The following DDS Security features are not implemented in OpenDDS.

 1. Optional parts of the DDS Security v1.1 specification

 A) Ability to write a custom plugin in C or in Java (C++ is supported)

 B) Logging Plugin support

 C) Built-in Logging Plugin

 D)Data Tagging

 2. Use of RTPS KeyHash for encrypted messages

 A) OpenDDS doesn't use KeyHash, so it meets the spec requirements of not leaking secured data

through KeyHash

 3. Immutability of Publisher’s Partition QoS (see OMG Issue DDSSEC12-49)

 4. Use of multiple plugin configurations (with different Domain Participants)

 5. CRL (RFC 5280) and OCSP (RFC 2560) support

 6. Certain plugin operations not used by built-in plugins may not be invoked by middleware

 7. Origin Authentication

 8. PKCS#11 for certificates, keys, passwords

 9. Relay as a permissions “action” (Publish and Subscribe are supported)

 10. Legacy matching behavior of permissions based on Partition QoS (9.4.1.3.2.3.1.4 in spec)

 11. 128-bit AES keys (256-bit is supported)

 12. Configuration of Built-In Crypto’s key reuse (within the DataWriter) and blocks-per-session

 13. Signing (without encrypting) at the payload level, see OMG Issue DDSSEC12-59

2 2 0 O p e n D D S D e v e l o p e r ’ s G u i d e

CHAPTER 15

Internet-Enabled RTPS

 15.1 Overview
Like any specification, standard, or system, RTPS was designed with certain assumptions.

Two of these assumptions severely limit the ability to use RTPS in modern network

environments. First, RTPS, or more specifically, SPDP uses multicast for discovery.

Multicast is not supported on the public Internet which precludes the use of RTPS for

Internet of Things (IoT) applications and Industrial Internet of Things (IIoT) applications.

Second, SPDP and SEDP advertise locators (IP and port pairs) for endpoints (DDS readers

and writer). If the participant is behind a firewall that performs network address

translation, then the locators advertised by the participant are useless to participants on the

public side of the firewall.

This chapter describes different tools and techniques for getting around these limitations.

First, we introduce the RtpsRelay as a service for forwarding RTPS messages according to

application-defined groups. The RtpsRelay can be used to connect participants that are

deployed in environments that don't support multicast and whose packets are subject to

NAT. Second, we introduce Interactive Connection Establishment (ICE) for RTPS. Adding

ICE to RTPS is an optimization that allows participants that are behind firewalls that

perform NAT to exchange messages directly. ICE requires a back channel for distributing

discovery information and is typically used with the RtpsRelay.

2 2 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 Internet-Enabled RTPS

 15.2 The RtpsRelay
The RtpsRelay is designed to allow participants to exchange RTPS datagrams when

separated by a firewall that performs network address translation (NAT) and/or a network

that does not support multicast like the public Internet. The RtpsRelay supports both IPv4

and IPv6. A participant that uses an RtpsRelay Instance is a client of that instance. Each

RtpsRelay instance contains two participants: the Application Participant and the Relay

Participant. The Application Participant runs in the domain of the application. The

RtpsRelay reads the built-in topics to discover Participants, DataReaders, and DataWriters.

It then shares this information with other RtpsRelay instances using the Relay Participant.

Each RtpsRelay instance maintains a map of associated readers and writers. When a client

sends an RTPS datagram to its RtpsRelay instance, the RtpsRelay instance uses the

association table to forward the datagram to other clients and other RtpsRelay instances so

that they can deliver it to their clients. Clients send RTPS datagrams via unicast which is

generally supported and compatible with NAT. The RtpsRelay can be used in lieu of or in

addition to conventional RTPS discovery.

The preceding diagram illustrates how the RtpsRelay can be used to connect participants

that are behind firewalls that may be performing NAT. First, a Participant sends an RTPS

datagram to its associated RtpsRelay (1). This datagram is intercepted by the firewall, the

source address and port are replaced by the external IP address and port of the firewall,

and then the datagram is sent to the RtpsRelay (2). The relationship between the source

address and external IP address and port selected by the firewall is called a NAT binding.

The RtpsRelay instance forwards the datagram to other RtpsRelay instances (3). The

RtpsRelays then forward the datagram to all of the destination participants (4). Firewalls

2 2 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 15.2 The RtpsRelay

on the path to the participants intercept the packet and replace the destination address

(which is the external IP and port of the firewall) with the address of the Participant

according to a previously created NAT binding (5).

The RTPS implementation in OpenDDS uses a port for SPDP, a port for SEDP, and a port for

conventional RTPS messages. The relay mirrors this idea and exposes three ports to handle

each type of traffic.

To keep NAT bindings alive, clients send STUN binding requests and indications

periodically to the RtspRelay ports. Participants using ICE may use these ports as a STUN

server for determining a server reflexive address. The timing parameters for the periodic

messages are controlled via the ICE configuration variables for server reflexive addresses.

 15.2.1 Using The RtpsRelay
Support for the RtpsRelay is activated via configuration. See Table 7-5 RTPS Discovery

Configuration Options and Table 7-17 RTPS_UDP Configuration Options. As an example:

[common]

DCPSGlobalTransportConfig=$file

[domain/4]

DiscoveryConfig=rtps

[rtps_discovery/rtps]

SpdpRtpsRelayAddress=1.2.3.4:4444

SedpRtpsRelayAddress=1.2.3.4:4445

UseRtpsRelay=1

[transport/the_rtps_transport]

transport_type=rtps_udp

DataRtpsRelayAddress=1.2.3.4:4446

UseRtpsRelay=1

Each participant should use a single RtpsRelay instance due to the way NAT bindings work.

Most firewalls will only forward packets received from the destination address that was

originally used to create the NAT binding. That is, if participant A is interacting with relay

A and participant B is interacting with relay B, then a message from A to B must go from A

to relay A, to relay B, and finally to B. Relay A cannot send directly to B since that packet

will not be accepted by the firewall.

2 2 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 Internet-Enabled RTPS

 15.2.2 Usage
The RtpsRelay itself is an OpenDDS application. The source code is located in

tools/rtpsrelay. Each RtpsRelay process has a set of ports for exchanging RTPS

messages with the participants called the "vertical" ports and a set of ports for exchanging

RTPS messages with other relays called the “horizontal” ports.

The RtpsRelay contains an embedded webserver called the meta discovery server. The

webserver has the following endpoints:

• /config

Responds with configured content and content type. See -MetaDiscovery options

below. Potential client participants can download the necessary configuration from

this endpoint.

• /healthcheck

Responds with HTTP 200 (OK) or 503 (Service Unavailable) if thread monitoring is

enabled and the RtpsRelay is not admitting new client participants. Load balancers

can use this endpoint to route new client participants to an available RtpsRelay

instance.

The command-line options for the RtpsRelay:

• -Id STRING

The Id option is mandatory and is a unique id associated with all topics published by

the relay.

• -HorizontalAddress ADDRESS

Determines the base network address used for receiving RTPS message from other

relays. By default, the relay listens on the first IP network and uses port 11444 for

SPDP messages, 11445 for SEDP messages, and 11446 for data messages.

• -VerticalAddress ADDRESS

Determines the base network address used for receiving RTPS messages from the

participants. By default, the relay listens on 0.0.0.0:4444 for SPDP messages,

0.0.0.0:4445 for SEDP messages, and 0.0.0.0.4446 for data messages.

• -RelayDomain DOMAIN

Sets the DDS domain used by the Relay Participant. The default is 0.

• -ApplicationDomain DOMAIN

Sets the DDS domain used by the Application Participant. The default is 1.

2 2 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 15.2 The RtpsRelay

• -UserData STRING

Set the contents of the Application Participant’s UserData QoS policy to the

provided string.

• -BufferSize INTEGER

Send of send and receive buffers in bytes

• -Lifespan SECONDS

RtpsRelay will only forward a datagram to a client if it has received a datagram from

the client in this amount of time. Otherwise, participant is marked as not alive. The

default is 60 seconds.

• -InactivePeriod SECONDS

RtpsRelay will mark participant as not active if does not receive a datagram from

the client in this amount of time. The default is 60 seconds.

• -AllowEmptyPartitions 0|1

Allow client participants with no partitions. Defaults to 1 (true).

• -IdentityCA PATH

-PermissionsCA PATH

-IdentityCertificate PATH

-IdentityKey PATH

-Governance PATH

-Permissions PATH

Provide paths to the DDS Security documents. Requires a security-enabled build.

• -RestartDetection 0|1

Setting RestartDetction to 1 causes the relay to track clients by the first 6 bytes of

their RTPS GUID and source IP address and clean up older sessions with the same

key. The default is 0 (false).

• -LogWarnings 0|1

-LogDiscovery 0|1

-LogActivity 0|1

Enable/disable logging of the various event types.

• -LogRelayStatistics SECONDS

-LogHandlerStatistics SECONDS

-LogParticipantStatistics SECONDS

Write statistics for the various event types to the log at the given interval, defaults

to 0 (disabled).

• -PublishRelayStatistics SECONDS

-PublishHandlerStatistics SECONDS

2 2 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 Internet-Enabled RTPS

-PublishParticipantStatistics SECONDS

Configure the relay to publish usage statistics on DDS topics at the given interval,

defaults to 0 (disabled).

• -LogThreadStatus 0|1

Log the status of the threads in the RtpsRelay, defaults to 0 (disabled).

• -ThreadStatusSafetyFactor INTEGER

Restart if thread monitoring is enabled and a thread has not checked in for this

many reporting intervals, default 3.

• -UtilizationLimit DECIMAL

If thread monitoring is enabled, the RtpsRelay will not accept to new client

participants if the CPU utilization of any thread is above this limit, default .95.

• -PublishRelayStatus SECONDS

-PublishRelayStatusLiveliness SECONDS

Setting PublishRelayStatus to a positive integer causes the relay to publish its status

at that interval. Setting PublishRelayStatusLiveliness to a positive integer causes

the relay to set the liveliness QoS on the relay status topic.

• -MetaDiscoveryAddress

Listening address for the meta discovery server, default 0.0.0.0:8080.

• -MetaDiscoveryContentType

The HTTP content type to report for the meta discovery config endpoint, default

application/json.

• -MetaDiscoveryContentPath PATH

-MetaDiscoveryContent CONTENT

The content returned by the meta discovery config endpoint, default {}. If a path is

specified, the content of the file will be used.

 15.2.3 Deployment Considerations
Running an RtpsRelay relay cluster with RTPS in the cloud leads to a bootstrapping problem

since multicast is not supported in the cloud. One option is to not use RTPS for discovery.

Another option is to run a single well-known relay that allows the other relays to discover

each other. A third option is to use a program translates multicast to unicast.

RTPS uses UDP which typically cannot be load balanced effectively due to the way NAT

bindings work. Consequently, each RtpsRelay server must have a public IP address. Load

balancing can be achieved by having the participants choose a relay according to a load

balancing policy. To illustrate, each relay could also run an HTTP server which does

2 2 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 15.2 The RtpsRelay

nothing but serve the public IP address of the relay. These simple web servers would be

exposed via a centralized load balancer. A participant, then, could access the HTTP load

balancer to select a relay.

 15.3 Interactive Connectivity
Establishment (ICE) for RTPS
Interactive Connectivity Establishment (ICE) is protocol for establishing connectivity

between a pair of hosts that are separated by at least one firewall that performs network

address translation. ICE can be thought of as an optimization for situations that require an

RtpsRelay. The success of ICE depends on the firewall(s) that separate the hosts.

The ICE protocol has three steps. First, a host determines its public IP address by sending

a STUN binding request to a public STUN server. The STUN server sends a binding

success response that contains the source address of the request. If the host has a public IP

address, then the address returned by STUN will match the IP address of the host.

Otherwise, the address will be the public address of the outermost firewall. Second, the

hosts generate and exchange candidates (which includes the public IP address determined

in the first step) using a side channel. A candidate is an IP and port that responds to STUN

messages and sends datagrams. Third, the hosts send STUN binding requests to the

candidates in an attempt to generate the necessary NAT bindings and establish

connectivity.

For OpenDDS, ICE can be used to potentially establish connectivity between SPDP

endpoints, SEDP endpoints, and ordinary RTPS endpoints. SPDP is used as the side channel

for SEDP and SEDP is used as the side channel for the ordinary RTPS endpoints. To this,

we added two parameters to the RTPS protocol for sending general ICE information and

ICE candidates and added the ability to execute the ICE protocol and process STUN

messages to the RTPS transports.

ICE is defined in IETF RFC 8445. ICE utilizes the STUN protocol that is defined in IETF

RFC 5389. The ICE implementation in OpenDDS does not use TURN servers.

ICE is enabled through configuration. The minimum configuration involves setting the

UseIce flag and providing addresses for the STUN servers. See Table 7-5 RTPS Discovery

Configuration Options and Table 7-17 RTPS_UDP Configuration Options for details.

[common]

DCPSGlobalTransportConfig=$file

DCPSDefaultDiscovery=DEFAULT_RTPS

2 2 7 O p e n D D S D e v e l o p e r ’ s G u i d e

https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc5389
https://www.rfc-editor.org/info/rfc8445

 Internet-Enabled RTPS

[transport/the_rtps_transport]

transport_type=rtps_udp

DataRtpsRelayAddress=5.6.7.8:4446

UseIce=1

DataStunServerAddress=1.2.3.4:3478

[domain/42]

DiscoveryConfig=DiscoveryConfig1

[rtps_discovery/DiscoveryConfig1]

SpdpRtpsRelayAddress=5.6.7.8:4444

SedpRtpsRelayAddress=5.6.7.8:4445

UseIce=1

SedpStunServerAddress=1.2.3.4:3478

 15.4 Security Considerations
The purpose of this section is to inform users about potential security issues when using

OpenDDS. Users of OpenDDS are encouraged to perform threat modeling, security

reviews, assessments, testing, etc. to ensure that their applications meet their security

objectives.

 15.4.1 Use DDS Security
Most applications have common objectives with respect to data security:

• Authentication - The identity of every process that participates in the DDS domain

can be established.

• Authorization - Only authorized writers of a topic may generate samples for a topic

and only authorized readers may consume samples for a topic.

• Integrity - The content of a sample cannot be altered without detection.

• Privacy - The content of a sample cannot be read by an unauthorized third party.

If an application is subject to any of these security objectives, then it should use the DDS

Security features described in Chapter 14. Using a non-secure discovery mechanism or a

non-secure transport leaves the application exposed to data security breaches.

2 2 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 15.4 Security Considerations

 15.4.2 Understand The Weaknesses Of (Secure) RTPS
Discovery
Secure RTPS Discovery has a behavior that can be exploited to launch a denial of service

attack (see https://us-cert.cisa.gov/ics/advisories/icsa-21-315-02). Basically, an attacker can

send a fake SPDP message to a secure participant which will cause it to begin

authentication with a non-existent participant. The authentication messages are repeated

resulting in amplification. An attacker could manipulate a group of secure participants to

launch a denial of service attack against a specific host or group of hosts. RTPS (without

security) has the same vulnerability except that messages come from the other builtin

endpoints. For this reason, consider the mitigation features below before making an

OpenDDS participant publicly accessible.

The weakness in RTPS Discovery can be mitigated but currently does not have a solution.

OpenDDS includes the following features for mitigation:

• Compare the source IP of the SPDP message to the locators. For most applications,

the locators advertised by SPDP should match the source IP of the SPDP message.

• See CheckSourceIp in Table 7-5 RTPS Discovery Configuration Options

• Use the participant lease time from secure discovery and bound it otherwise. By

default, OpenDDS will attempt authentication for the participant lease duration

specified in the SPDP message. However, this data can’t be trusted so a smaller

maximum lease time can be specified to force authentication or discovery to

terminate before the lease time.

• See MaxAuthTime in Table 7-5 RTPS Discovery Configuration Options

• Limit the number of outstanding secure discoveries. The number of discovered but

not-yet-authenticated participants is capped when using secure discovery.

• See MaxParticipantsInAuthentication in Table 7-5 RTPS Discovery

Configuration Options

 15.4.3 Run Participants In A Secure Network
One approach to a secure application without DDS Security is to secure it at the network

layer instead of the application layer. A physically secure network satisfies this by

construction. Another approach is to use a virtual private network (VPN) or a secure

overlay. These approaches have a simple security model when compared to DDS Security

and are not interoperable.

2 2 9 O p e n D D S D e v e l o p e r ’ s G u i d e

https://us-cert.cisa.gov/ics/advisories/icsa-21-315-02

CHAPTER 16

XTypes

 16.1 Overview
The DDS specification defines a way to build distributed applications using a data-centric

publish and subscribe model. In this model, publishing and subscribing applications

communicate via Topics and each Topic has a data type. An assumption built into this

model is that all applications agree on data type definitions for each Topic that they use.

This assumption is not practical as systems must be able to evolve while remaining

compatible and interoperable.

The DDS XTypes (Extensible and Dynamic Topic Types) specification loosens the

requirement on applications to have a common notion of data types. Using XTypes, the

application developer adds IDL annotations that indicate where the types may vary between

publisher and subscriber and how those variations are handled by the middleware.

This release of OpenDDS implements the XTypes specification version 1.3 at the Basic

Conformance level, with a partial implementation of the Dynamic Language Binding. Some

features described by the specification are not yet implemented in OpenDDS — those are

noted below in section 16.8. This includes IDL annotations that are not yet implemented.

The “Specification Differences” section (16.9) describes situations where the

implementation of XTypes in OpenDDS departs from or infers something about the

specification. Specification issues have been raised for these situations.

2 3 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

 16.2 Features

 16.2.1 Extensibility
There are 3 kinds of extensibility for types: Appendable, Mutable, and Final

• Appendable denotes a constructed type which may have additional members added

onto or removed from the end.

• Mutable denotes a constructed type that allows for members to be added, removed,

and reordered so long as the keys and the required members of the sender and

receiver remain. Mutable extensibility is accomplished by assigning a stable

identifier to each member.

• Final denotes a constructed type that can not add, remove, or reorder members,.

This can be considered a non-extensible constructed type, with behavior similar to

that of a type created before XTypes.

Extensibility is set by the user in the IDL with the annotations: @appendable, @mutable,

@final

The default extensibility is Appendable. This default extensibility can be changed with the

IDL compiler command line option --default-extensibility EXTENSIBILITY Where

EXTENSIBILITY is "final", "appendable" or "mutable".

Structs, unions, and enums are the only types which can use any of the extensibilities.

The default extensibility for enums is “appendable” and is not governed by --default-

extensibility. TypeObjects for received enums that do not set any flags are treated as a

wildcard.

 16.2.2 Assignability
Assignability describes the ability of values of one type to be coerced to values of a

possibility different type.

Assignability between the type of a writer and reader is checked as part of discovery. If the

types are assignable but not identical, then the “Try Construct” mechanism will be used to

coerce values of the writer’s type to values of the reader’s type.

In order for two constructed types to be assignable they must

• Have the same extensibility.

• Have the same set of keys.

2 3 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.2 Features

Each member of a constructed type has an identifier. This identifier may be assigned

automatically or explicitly.

Union assignability depends on two dimensions. First, unions are only assignable if their

discriminators are assignable. Second, for any branch label or default that exists in both

unions, the members selected by that branch label must be assignable.

 16.2.3 Interoperability With Non-XTypes
Implementations
Communication with a non-XTypes DDS (either an older OpenDDS or another DDS

implementation which has RTPS but not XTypes 1.2+) requires compatible IDL types and

the use of RTPS Discovery. Compatible IDL types means that the types are structurally

equivalent and serialize to the same bytes using XCDR version 1.

Additionally, the XTypes-enabled participant needs to be set up as follows:

• Types cannot use Mutable extensibility

• Data Writers must have their Data Representation QoS policy set to

DDS::XCDR_DATA_REPRESENTATION

• Data Readers must include DDS::XCDR_DATA_REPRESENTATION in the list of data

representations in their Data Representation QoS (This is true by default)

The “Data Representation" section below shows how to change the data representation.

 16.3 Examples and Explanation
Suppose you are in charge of deploying a set of weather stations that publish temperature,

pressure, and humidity. The following examples show how various features of XTypes may

be applied to address changes in the schema published by the weather station. Specifically,

without XTypes, one would either need to create a new type with its own

DataWriters/DataReaders or update all applications simultaneously. With proper planning

and XTypes, one can simply modify the existing type (within limits) and writers and readers

using earlier versions of the topic type will remain compatible with each other and be

compatible with writers and readers using new versions of the topic type.

 16.3.1 Mutable Extensibility
The type published by the weather stations can be made extensible with the @mutable

annotation:

2 3 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

// Version 1
@topic
@mutable
struct StationData {
 short temperature;
 double pressure;
 double humidity;
};

Suppose that some time in the future, a subset of the weather stations are upgraded to

monitor wind speed and direction:

enum WindDir {N, NE, NW, S, SE, SW, W, E};
// Version 2
@topic
@mutable
struct StationData {
 short temperature;
 double pressure;
 double humidity;
 short wind_speed;
 WindDir wind_direction;
};

When a Version 2 writer interacts with a Version 1 reader, the additional fields will be

ignored by the reader. When a Version 1 writer interacts with a Version 2 reader, the

additional fields will be initialized to a "logical zero" value for its type (empty string, FALSE

boolean) - see Table 9 of the XTypes specification for details.

 16.3.2 Assignability
The first and second versions of the StationData type are assignable meaning that it is

possible to construct a version 2 value from a version 1 value and vice-versa. The

assignability of non-constructed types (e.g., integers, enums, strings) is based on the types

being identical or identical up to parameterization, i.e., bounds of strings and sequences

may differ. The assignability of constructed types like structs and unions is based on finding

corresponding members with assignable types. Corresponding members are those that

have the same id.

A type marked as @mutable allows for members to be added, removed, or reordered so long

as member ids are preserved through all of the mutations.

 16.3.3 Member IDs
Member ids are assigned using various annotations. A policy for a type can be set with

either @autoid(SEQUENTIAL) or @autoid(HASH):

2 3 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.3 Examples and Explanation

// Version 3
@topic
@mutable
@autoid(SEQUENTIAL)
struct StationData {
 short temperature;
 double pressure;
 double humidity;
};

// Version 4
@topic
@mutable
@autoid(HASH)
struct StationData {
 short temperature;
 double pressure;
 double humidity;
};

SEQUENTIAL causes ids to be assigned based on the position in the type. HASH causes ids

to be computed by hashing the name of the member. If no @autoid annotation is specified,

the policy is SEQUENTIAL.

Suppose that Version 3 was used in the initial deployment of the weather stations and the

decision was made to switch to @autoid(HASH) when adding the new fields for wind speed

and direction. In this case, the ids of the pre-existing members can be set with @id:

enum WindDir {N, NE, NW, S, SE, SW, W, E};

// Version 5
@topic
@mutable
@autoid(HASH)
struct StationData {
 @id(0) short temperature;
 @id(1) double pressure;
 @id(2) double humidity;
 short wind_speed;
 WindDir wind_direction;
};

See the “Member ID Annotations” section for more details.

 16.3.4 Appendable Extensibility
Mutable extensibility requires a certain amount of overhead both in terms of processing and

network traffic. A more efficient but less flexible form of extensibility is @appendable.

Extensibility with @appendable is limited in that members can only be added to or removed

from the end of the type. With @appendable, the initial version of the weather station IDL

would be:

2 3 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

// Version 6
@topic
@appendable
struct StationData {
 short temperature;
 double pressure;
 double humidity;
};

And the subsequent addition of the wind speed and direction members would be:

enum WindDir {N, NE, NW, S, SE, SW, W, E};

// Version 7
@topic
@appendable
struct StationData {
 short temperature;
 double pressure;
 double humidity;
 short wind_speed;
 WindDir wind_direction;
};

As with @mutable, when a Version 7 Writer interacts with a Version 6 Reader, the

additional fields will be ignored by the reader. When a Version 6 Writer interacts with a

Version 7 Reader, the additional fields will be initialized to default values based on Table 9

of the XTypes specification.

Appendable is the default extensibility.

 16.3.5 Final Extensibility
The third kind of extensibility is @final. Annotating a type with @final means that it will not

be compatible with (assignable to/from) a type that's structurally different. The @final

annotation can be used to define types for pre-XTypes compatibility or in situations where

the overhead of @mutable or @appendable is unacceptable.

 16.3.6 Try Construct
From a reader’s perspective, there are three possible scenarios when attempting to

initialize a member. First, the member type is identical to the member type of the reader.

This is the trivial case the value from the writer is copied to the value for the reader.

Second, the writer does not have the member. In this case, the value for the reader is

initialized to a default value based on Table 9 of the XTypes specification (this is the "logical

zero" value for the type). Third, the type offered by the writer is assignable but not identical

to the type required by the reader. In this case, the reader must try to construct its value

from the corresponding value provided by the writer.

2 3 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.3 Examples and Explanation

Suppose that the weather stations also publish a topic containing station information:

typedef string<8> StationID;
typedef string<256> StationName;

// Version 1
@topic
@mutable
struct StationInfo {
 @try_construct(TRIM) StationID station_id;
 StationName station_name;
};

Eventually, the pool of station IDs is exhausted so the IDL must be refined as follows:

typedef string<16> StationID;
typedef string<256> StationName;

// Version 2
@topic
@mutable
struct StationInfo {
 @try_construct(TRIM) StationID station_id;
 StationName station_name;
};

If a Version 2 writer interacts with a Version 1 reader, the station ID will be truncated to 8

characters. While perhaps not ideal, it will still allow the systems to interoperate.

There are two other forms of try-construct behavior. Fields marked as

@try_construct(USE_DEFAULT) will receive a default value if value construction fails. In

the previous example, this means the reader would receive an empty string for the station

ID if it exceeds 8 characters. Fields marked as @try_construct(DISCARD) cause the entire

sample to be discarded. In the previous example, the Version 1 reader will never see a

sample from a Version 2 writer where the original station ID contains more than 8

characters. @try_construct(DISCARD) is the default behavior.

 16.4 Data Representation
Data representation is the way a data sample can be encoded for transmission. Data

representation can be XML, XCDR1, or XCDR2.

• XML is unsupported and should not be used

• XCDR1 with appendable extensibility should not be used

• XCDR2 is completely supported and preferred

2 3 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

XCDR2 is a more robust version of XCDR1 and should be used in preference to XCDR1

unless there is a reason to do otherwise.

Data representation is a QoS policy alongside the other QoS options. Its listed values

represent allowed serialized forms of the data sample. The DataWriter and DataReader

need to have at least one matching data representation for communication between them to

be possible.

The default value of the DataRepresentationQoS policy is an empty sequence. This is

interpreted by the middleware as XCDR2 for DataWriters and the alternatives XCDR1 |

XCDR2 for DataReaders. A writer or reader without an explicitly-set

DataRepresentationQoS will therefore be able to communicate with another reader or

writer which is compatible with XCDR2. The example below shows a possible configuration

for an XCDR1 DataWriter.

DDS::DataWriterQos qos;
pub->get_default_datawriter_qos(qos);
qos.representation.value.length(1);
qos.representation.value[0] = DDS::XCDR_DATA_REPRESENTATION;
DDS::DataWriter_var dw = pub->create_datawriter(topic, qos, 0, 0);

Note that the IDL constant used for XCDR1 is XCDR_DATA_REPRESENTATION (without the

digit).

In addition to a DataWriter/DataReader QoS setting for data representation, each type

defined in IDL can have its own data representation specified via an annotation. This value

restricts which data representations can be used for that type. A DataWriter/DataReader

must have at least one data representation in common with the type it uses.

The default value for an unspecified data representation annotation is to allow all forms of

serialization.

The type's set of allowed data representations can be specified by the user in IDL with the

notation: @OpenDDS::data_representation(XCDR2) where XCDR2 is replaced with the

specific data representation.

 16.5 Type Consistency Enforcement
The Type Consistency Enforcement QoS policy lets the application fine-tune details of how

types may differ between writers and readers. The policy is only applies to data readers.

This means that each reader can set its own policy for how its type may vary from the types

of the writers that it may match.

2 3 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.5 Type Consistency Enforcement

There are six members of the TypeConsistencyEnforcementQosPolicy struct defined by

XTypes, but OpenDDS only supports setting one of them: ignore_member_names. All other

members should be kept at their default values.

ignore_member_names defaults to FALSE so member names (along with Member IDs, see

16.6.5) are significant for type compatibility. Changing this to TRUE means that only

Member IDs are used for type compatibility.

 16.6 IDL Annotations

 16.6.1 Indicating Which Types Can Be Topic Types

 16.6.1.1 @topic
Applies To: struct or union type declarations

The topic annotation marks a topic type for samples to be transmitted from a publisher or

received by a subscriber. A topic type may contain other topic and non-topic types. See

section 2.1.1 for more details.

 16.6.1.2 @nested
Applies To: struct or union type declarations

The @nested annotation marks a type that will always be contained within another. This can

be used to prevent a type from being used as a topic. One reason to do so is to reduce the

amount of code generated for that type.

 16.6.1.3 @default_nested
Applies To: modules

The @default_nested(TRUE) or @default_nested(FALSE) sets the default nesting behavior

for a module. Types within a module marked with @default_nested(FALSE) can still set

their own behavior with @nested.

 16.6.2 Specifying Allowed Data Representations
Data Representation annotations mark the formats in which data samples of this type can be

represented in a serialized form. The Data Representation annotations listed on the type will

be compared to those in the QoS policies of the reader or writer that is trying to use the

type. If a data representation is shared between the type and entity, then they can be used

2 3 9 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

together. OpenDDS’s default data representation for entities is XCDR2. If no data

representation is specified for a type, there are no restrictions on which data

representations that a QoS can use with the type.

 16.6.2.1 @OpenDDS::data_representation(XML)
Applies To: topic types

Limitations: XML is not currently supported

 16.6.2.2 @OpenDDS::data_representation(XCDR1)
Applies To: topic types

Limitations: XCDR1 is not recommended. See section 16.4 for details

 16.6.2.3 @OpenDDS::data_representation(XCDR2)
Applies To: topic types

XCDR2 is currently the recommended data representation.

 16.6.3 Determining Extensibility
The extensibility annotations determine how a type may be changed and still be compatible.

If no extensibility annotation is set, the type will default to appendable. The default can be

changed with the command line option --default-extensibility type, where type can be final,

appendable, or mutable.

 16.6.3.1 @mutable
Alias: @extensibility(MUTABLE)

Applies To: type declarations

This annotation indicates a type may have non-key or non-must-understand members

removed. It may also have additional members added.

 16.6.3.2 @appendable
Alias: @extensibility(APPENDABLE)

Applies To: type declarations

2 4 0 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.6 IDL Annotations

This annotation indicates a type may have additional members added or members at the end

of the type removed.

Limitations: Appendable is not currently supported when XCDR1 is used as the data

representation.

 16.6.3.3 @final
Alias: @extensibility(FINAL)

Applies To: type declarations

This annotation marks a type that cannot be changed and still be compatible. Final is most

similar to pre-XTypes.

 16.6.4 Customizing XTypes Per-member
Try Construct annotations dictate how members of one object should be converted from

members of a different but assignable object. If no try construct annotation is added, it will

default to discard.

 16.6.4.1 @try_construct(USE_DEFAULT)
Applies to: structure and union members, sequence and array elements

The use_default try construct annotation will set the member whose deserialization failed to

a default value which is determined by the XTypes specification. Sequences will be of

length 0, with the same type as the original sequence. Primitives will be set equal to 0.

Strings will be replaced with the empty string. Arrays will be of the same length but have

each element set to the default value. Enums will be set to the first enumerator defined.

 16.6.4.2 @try_construct(TRIM)
Applies to: structure and union members, sequence and array elements

The trim try construct annotation will, if possible, shorten a received value to one fitting the

receiver’s bound. As such, trim only makes logical sense on bounded strings and bounded

sequences.

 16.6.4.3 @try_construct(DISCARD)
Applies to: structure and union members, sequence and array elements

2 4 1 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

The discard try construct annotation will “throw away” the sample if an element fails to

deserialize.

 16.6.5 Member ID Assignment
If no explicit id annotation is used, then Member IDs will automatically be assigned

sequentially.

 16.6.5.1 @id(value)
Applies to: structure and union members

The value is a 32-bit integer which assigns that member’s ID.

 16.6.5.2 @autoid(value)
Applies to: module declarations, structure declarations, union declarations

The autoid annotation can take two values, HASH or SEQUENTIAL. SEQUENTIAL states that the

identifier shall be computed by incrementing the preceding one. HASH states that the

identifier should be calculated with a hashing algorithm – the input to this hash is the

member’s name. HASH is the default value of @autoid.

 16.6.5.3 @hashid(value)
Applies to: structure and union members

The @hashid sets the identifier to the hash of the value parameter, if one is specified. If the

value parameter is omitted or is the empty string, the member’s name is used as if it was

the value.

 16.6.6 Determining The Key Fields Of A Type

 16.6.6.1 @key
Applies to: structure members, union discriminator

The @key annotation marks a member used to determine the Instances of a topic type. See

section 2.1.1.2 for more details on the general concept of a Key. For XTypes specifically, two

types can only be compatible if each contains the members that are keys within the other.

2 4 2 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.7 Dynamic Language Binding

 16.7 Dynamic Language Binding

 16.7.1 Representing Types With TypeObject And
DynamicType
In XTypes, the types of the peers may not be identical, as in the case of appendable or

mutable extensibility. In order for a peer to be aware of its remote peer’s type, there must

be a way for the remote peer to communicate its type. TypeObject is an alternative to IDL

for representing types, and one of the purposes of TypeObject is to communicate the peers’

types.

There are two classes of TypeObject: MinimalTypeObject and CompleteTypeObject. A

MinimalTypeObject object contains minimal information about the type that is sufficient for

a peer to perform type compatibility checking. However, MinimalTypeObject may not

contain all information about the type as represented in the corresponding user IDL file. In

cases where the complete information about the type is required, CompleteTypeObject

should be used. When XTypes is enabled, peers communicate their TypeObject information

during the discovery process automatically. Internally, the local and received TypeObjects

are stored in a TypeLookupService object, which is shared between the entities in the same

DomainParticipant.

In some cases, it is useful to have an application which can receive data samples of any type

without having to perform type compatibility checks during discovery. An example of such

applications is a monitor application that monitors the samples of various types sent by

multiple data writers. These applications don’t know the data types of the writers, and thus

for them to be able to dissect and interpret the received samples, they need a method to

extract the information from the corresponding types. The Dynamic Language Binding

provides an interface to do that.

In the Dynamic Language Binding, each type is represented using a DynamicType object,

which has a TypeDescriptor object that describes all the information needed to correctly

process the type. Likewise, each member in a type is represented using a

DynamicTypeMember object, which has a MemberDescriptor object that describes any

information needed to correctly process the type member. DynamicType is converted from

the corresponding CompleteTypeObject internally by the system.

 16.7.1.1 Enabling Use of CompleteTypeObjects
To enable use of CompleteTypeObjects needed for the dynamic binding, they must be

generated and OpenDDS must be configured to use them. To generate them, -Gxtypes-

2 4 3 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

complete must be passed to opendds_idl. For MPC, this can be done like by adding this to

the opendds_idl arguments for idl files in the project, like this:

TypeSupport_Files {
 dcps_ts_flags += -Gxtypes-complete
 Messenger.idl
}

To do the same for CMake:

OPENDDS_TARGET_SOURCES(target
 Messenger.idl
 OPENDDS_IDL_OPTIONS -Gxtypes-complete
)

Once set up to be generated, OpenDDS has to be configured to send and receive the

CompleteTypeObjects. This can be done by setting the UseXTypes RTPS discovery

configuration option or programmatically using the

OpenDDS::RTPS::RtpsDiscovery::use_xtypes() setter methods.

 16.7.2 Interpreting Data Samples With DynamicData
Together with DynamicType, DynamicData allows users to interpret a received data sample

and read individual fields from it. Each DynamicData object is associated with a type,

represented by a DynamicType object, and the data corresponding to an instance of that

type. Let’s take a look at an example with the following type, described below in IDL:

@appendable

struct NestedStruct {

 @id(1) short s_field;

};

@topic

@mutable

struct MyStruct {

 @id(1) long l_field;

 @id(2) unsigned short us_field;

 @id(3) float f_field;

 @id(4) NestedStruct nested_field;

 @id(5) sequence<unsigned long> ul_seq_field;

 @id(6) double d_field[10];

};

2 4 4 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.7 Dynamic Language Binding

The samples for MyStruct are written by a normal, statically-typed DataWriter. The writer

application needs to have the IDL-generated code including the “complete” form of

TypeObjects. Use a command-line option to opendds_idl to enable CompleteTypeObjects

since the default is to generate MinimalTypeObjects (see section 8.1).

A dynamically-typed reader can be developed using the Recorder and RecorderListener

classes (see section 12.1). Recorder’s get_dynamic_data can be used to construct a

DynamicData object for each received sample from the writer. Internally, the

CompleteTypeObjects received from discovering that writer are converted to DynamicTypes

and they are then used to construct the DynamicData objects. Once a DynamicData object

for a MyStruct sample is constructed, its members can be read as described in the following

sections.

 16.7.2.1 Reading Basic Types
DynamicData provides methods for reading members whose types are basic such as

integers, floating point numbers, characters, boolean. For a complete list of basic types for

which DynamicData provides an interface, please refer to the XTypes specification. To call a

correct method for reading a member, we need to know the type of the member as well as

its id. For our example, we first want to get the number of members that the sample

contains. In these examples, the “data” object is an instance of DynamicData.

ACE_CDR::ULong count = data.get_item_count();

Then, each member’s id can be read with get_member_id_at_index. The input for this

function is the index of the member in the sample, which can take a value from 0 to count -

1.

XTypes::MemberId id = data.get_member_id_at_index(0);

The MemberDescriptor for the corresponding member then can be obtained as follows.

XTypes::MemberDescriptor md;

DDS::ReturnCode_t ret = data.get_descriptor(md, id);

The returned MemberDescriptor allows us to know the type of the member. Suppose id is 1,

meaning that the member at index 0 is l_field, we now can get its value.

ACE_CDR::Long my_long;

ret = data.get_int32_value(my_long, id);

After the call, my_long contains the value of the member l_field from the sample. The

method returns DDS::RETCODE_OK if successful and DDS::RETCODE_ERROR in case of failure.

Note that the method called on the DynamicData object must match the type of the

requested member; in this example, the member has type long (from its IDL) and thus

2 4 5 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

get_int32_value is called. If the method called doesn’t match the type of the member, it

will return DDS::RETCODE_ERROR.

Similarly, suppose we have already found out the types and ids of the members us_field and

f_field, their values can be read as follows.

ACE_CDR::UShort my_ushort;

ret = data.get_get_uint16_value(my_ushort, 2); // Get the value of us_field

ACE_CDR::Float my_float;

ret = data.get_float32_value(my_float, 3); // Get the value of f_field

 16.7.2.2 Reading Collections of Basic Types
Besides a list of methods for getting values of members of basic types, DynamicData also

defines methods for reading sequence members. In particular, for each method that reads

value from a basic type, there is a counterpart that reads a sequence of the same basic type.

For instance, get_int32_value reads the value from a member of type long, and

get_int32_values reads the value from a member of type sequence<long>. For the member

ul_seq_field in our example, its value can be read as follows.

CORBA::ULongSeq my_ul_seq;

ret = data.get_uint32_values(my_ul_seq, id); // id is 5

Because ul_seq_field is a sequence of unsigned 32-bit integers, the get_uint32_values

method is used. Again, the second argument is the id of the requested member, which is 5

for ul_seq_field. When successful, my_ul_seq contains values of all elements of the member

ul_seq_field in the sample.

To get the values of the array member d_field, we first need to create a separate

DynamicData object for it, and then read individual elements of the array using the new

DynamicData object.

XTypes::DynamicData array_data;

DDS::ReturnCode_t ret = data.get_complex_value(array_data, id); // id is 6

const ACE_CDR::ULong num_items = array_data.get_item_count();

for (ACE_CDR::ULong i = 0; i < num_items; ++i) {

 const XTypes::MemberId my_id = array_data.get_member_id_at_index(i);

 ACE_CDR::Double my_double;

 ret = array_data.get_float64_value(my_double, my_id);

}

In the example code above, get_item_count returns the number of elements of the array.

Inside the for loop, the index of each element is converted to an id within the array using

2 4 6 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.7 Dynamic Language Binding

get_member_id_at_index. Then, this id is used to read the element’s value into my_double.

Note that the second parameter of the interfaces provided by DynamicData must be the id

of the requested member. In case of collection, elements are considered members of the

collection. However, the collection element doesn’t have a member id. And thus, we need to

convert its index into an id before calling a get_*_value (or get_*_values) method.

 16.7.2.3 Reading Members of More Complex Types
For a more complex member such as a nested structure or union, the discussed

DynamicData methods are not suitable. And thus, users first need to get a new

DynamicData object that represents the sole data of the member with get_complex_value.

This new DynamicData object can then be used to get the values of the inner members of

the nested member. For example, a DynamicData object for the nested_field member of the

MyStruct sample can be obtained as follows.

XTypes::DynamicData nested_data;

DDS::ReturnCode_t ret = data.get_complex_value(nested_data, id); // id is 4

Recall that nested_field has type NestedStruct which has one member s_field with id 1. Now

the value of s_field can be read from nested_data using get_int16_value, since s_field has

type short.

ACE_CDR::Short my_short;

ret = nested_data.get_int16_value(my_short, id); // id is 1

The get_complex_value method is also suitable for any other cases where the value of a

member cannot be read directly using the get_*_value or get_*_values methods. As an

example, suppose we have a struct MyStruct2 defined as follows.

@appendable

Struct MyStruct2 {

 @id(1) sequence<NestedStruct> seq_field;

};

And suppose we already have a DynamicData object, called data, that represents a sample

of MyStruct2. To read the individual elements of seq_field, we first get a new DynamicData

object for the seq_field member.

XTypes::DynamicData seq_data;

DDS::ReturnCode_t ret = data.get_complex_value(seq_data, id); // id is 1

Since the elements of seq_field are structures, for each of them we create another new

DynamicData object to represent it, which can be used to read its member.

const ACE_CDR::ULong num_elems = seq_data.get_item_count();

2 4 7 O p e n D D S D e v e l o p e r ’ s G u i d e

 XTypes

for (ACE_CDR::ULong i = 0; i < num_elems; ++i) {

 const XTypes::MemberId my_id = seq_data.get_member_id_at_index(i);

 XTypes::DynamicData elem_data; // Represent each element.

 ret = seq_data.get_complex_value(elem_data, my_id);

 ACE_CDR::Short my_short;

 ret = elem_data.get_int16_value(my_short, 1);

}

 16.8 Unimplemented Features
OpenDDS implements the XTypes specification version 1.3 at the Basic Conformance level,

with a partial implementation of the Dynamic Language Binding (supported features of

which are described in section 16.7). Specific unimplemented features listed below. The

two optional profiles, XTypes 1.1 Interoperability (XCDR1) and XML, are not implemented.

 16.8.1 Type System
• IDL map type

• IDL bitmask type

• Struct and union inheritance

 16.8.2 Annotations
IDL4 defines many standardized annotations and XTypes uses some of them. The

Annotations recognized by XTypes are in Table 21 in XTypes 1.3. Of those listed in that

table, the following are not supported in OpenDDS. They are listed in groups defined by the

rows of that table. Some annotations in that table, and not listed here, can only be used

with new capabilities of the Type System (see 16.8.1).

• Struct members

• @optional

• @must_understand

• @non_serialized

• Struct or union members

• @external

• Enums

2 4 8 O p e n D D S D e v e l o p e r ’ s G u i d e

 16.8 Unimplemented Features

• @bit_bound

• @default_literal

• @value

• @verbatim

 16.9 Differences from the specification
Spec issues tracked in OMG's Jira database can be viewed at

https://issues.omg.org/issues/lists/dds-xtypes-rtf

• Inconsistent topic status isn’t set for reader/reader or writer/writer in non-XTypes

use cases

• DDSXTY14-29: Define the encoding and extensibility used by Type Lookup Service

• DDSXTY14-33: Enums must have the same "bit bound" to be assignable

• DDSXTY14-27: Default data representation is XCDR2

• DDSSEC12-86: Type Lookup Service when using DDS Security

• DDSXTY14-35: Anonymous types in Strongly Connected Components

• DDSXTY14-40: Meaning of ignore_member_names in TypeConsistencyEnforcement

2 4 9 O p e n D D S D e v e l o p e r ’ s G u i d e

https://issues.omg.org/issues/lists/dds-xtypes-rtf

	Chapter 1 Introduction
	1.1. DCPS Overview
	1.1.1 Basic Concepts
	1.1.1.1 Domain
	1.1.1.2 DomainParticipant
	1.1.1.3 Topic
	1.1.1.4 DataWriter
	1.1.1.5 Publisher
	1.1.1.6 Subscriber
	1.1.1.7 DataReader

	1.1.2 Built-In Topics
	1.1.3 Quality of Service Policies
	1.1.4 Listeners
	1.1.5 Conditions

	1.2 OpenDDS Implementation
	1.2.1 Compliance
	1.2.1.1 DDS Compliance
	1.2.1.2 DDSI-RTPS Compliance
	OpenDDS RTPS Implementation Notes

	1.2.1.3 IDL Compliance

	1.2.2 Extensions to the DDS Specification
	1.2.3 OpenDDS Architecture
	1.2.3.1 Design Philosophy
	1.2.3.2 Extensible Transport Framework (ETF)
	1.2.3.3 DDS Discovery
	Centralized Discovery with DCPSInfoRepo
	Peer-to-Peer Discovery with RTPS

	1.2.3.4 Threading
	1.2.3.5 Configuration

	1.3 Installation
	1.3.1 Building With a Feature Enabled or Disabled
	1.3.2 Disabling the Building of Built-In Topic Support
	1.3.3 Disabling the Building of Compliance Profile Features
	1.3.3.1 Content-Subscription Profile
	1.3.3.2 Persistence Profile
	1.3.3.3 Ownership Profile
	1.3.3.4 Object Model Profile

	1.4 Building Applications that use OpenDDS
	1.4.1 MPC: The Makefile, Project, and Workspace Creator
	1.4.2 CMake
	1.4.3 Custom Build systems

	Chapter 2 Getting Started
	2.1 Using DCPS
	2.1.1 Defining Data Types with IDL
	2.1.1.1 Identifying Topic Types
	2.1.1.2 Keys
	2.1.1.3 Union Topic Types
	2.1.1.4 Topic Types vs. Nested Types

	2.1.2 Processing the IDL
	2.1.3 A Simple Message Publisher
	2.1.3.1 Initializing the Participant
	2.1.3.2 Registering the Data Type and Creating a Topic
	2.1.3.3 Creating a Publisher
	2.1.3.4 Creating a DataWriter and Waiting for the Subscriber
	2.1.3.5 Sample Publication

	2.1.4 Setting up the Subscriber
	2.1.4.1 Initializing the Participant
	2.1.4.2 Registering the Data Type and Creating a Topic
	2.1.4.3 Creating the subscriber
	2.1.4.4 Creating a DataReader and Listener

	2.1.5 The Data Reader Listener Implementation
	2.1.6 Cleaning up in OpenDDS Clients
	2.1.7 Running the Example
	2.1.8 Running Our Example with RTPS

	2.2 Data Handling Optimizations
	2.2.1 Registering and Using Instances in the Publisher
	2.2.2 Reading Multiple Samples
	2.2.3 Zero-Copy Read

	Chapter 3 Quality of Service
	3.1 Introduction
	3.2 QoS Policies
	3.2.1 Default QoS Policy Values
	3.2.2 LIVELINESS
	3.2.3 RELIABILITY
	3.2.4 HISTORY
	3.2.5 DURABILITY
	3.2.6 DURABILITY_SERVICE
	3.2.7 RESOURCE_LIMITS
	3.2.8 PARTITION
	3.2.9 DEADLINE
	3.2.10 LIFESPAN
	3.2.11 USER_DATA
	3.2.12 TOPIC_DATA
	3.2.13 GROUP_DATA
	3.2.14 TRANSPORT_PRIORITY
	3.2.15 LATENCY_BUDGET
	3.2.16 ENTITY_FACTORY
	3.2.17 PRESENTATION
	3.2.18 DESTINATION_ORDER
	3.2.19 WRITER_DATA_LIFECYCLE
	3.2.20 READER_DATA_LIFECYCLE
	3.2.21 TIME_BASED_FILTER
	3.2.22 OWNERSHIP
	3.2.23 OWNERSHIP_STRENGTH

	3.3 Policy Example

	Chapter 4 Conditions and Listeners
	4.1 Introduction
	4.2 Communication Status Types
	4.2.1 Topic Status Types
	4.2.1.1 Inconsistent Topic Status

	4.2.2 Subscriber Status Types
	4.2.2.1 Data On Readers Status

	4.2.3 Data Reader Status Types
	4.2.3.1 Sample Rejected Status
	4.2.3.2 Liveliness Changed Status
	4.2.3.3 Requested Deadline Missed Status
	4.2.3.4 Requested Incompatible QoS Status
	4.2.3.5 Data Available Status
	4.2.3.6 Sample Lost Status
	4.2.3.7 Subscription Matched Status

	4.2.4 Data Writer Status Types
	4.2.4.1 Liveliness Lost Status
	4.2.4.2 Offered Deadline Missed Status
	4.2.4.3 Offered Incompatible QoS Status
	4.2.4.4 Publication Matched Status

	4.3 Listeners
	4.3.1 Topic Listener
	4.3.2 Data Writer Listener
	4.3.3 Publisher Listener
	4.3.4 Data Reader Listener
	4.3.5 Subscriber Listener
	4.3.6 Domain Participant Listener

	4.4 Conditions
	4.4.1 Status Condition
	4.4.1.1 Status Condition Example

	4.4.2 Additional Condition Types
	4.4.2.1 Read Conditions
	4.4.2.2 Query Conditions
	4.4.2.3 Guard Conditions

	Chapter 5 Content-Subscription Profile
	5.1 Introduction
	5.2 Content-Filtered Topic
	5.2.1 Filter Expressions
	5.2.2 Expression Parameters
	5.2.3 Filtering and Dispose/Unregister Samples
	5.2.4 Content-Filtered Topic Example

	5.3 Query Condition
	5.3.1 Query Expressions
	5.3.2 Query Condition Example

	5.4 Multi Topic
	5.4.1 Topic Expressions
	5.4.2 Usage Notes
	5.4.2.1 Join Keys and DCPS Data Keys
	5.4.2.2 How Resulting Samples are Constructed
	5.4.2.3 Use with Subscriber Listeners

	5.4.3 Multi Topic Example
	5.4.3.1 IDL and Topic Expression
	5.4.3.2 Creating the Multi Topic Data Reader
	5.4.3.3 Reading Data with the Multi Topic Data Reader

	Chapter 6 Built-In Topics
	6.1 Introduction
	6.2 Built-In Topics for DCPSInfoRepo Configuration
	6.3 DCPSParticipant Topic
	6.4 DCPSTopic Topic
	6.5 DCPSPublication Topic
	6.6 DCPSSubscription Topic
	6.7 Built-In Topic Subscription Example
	6.8 OpenDDS-specific Built-In Topics
	6.8.1 OpenDDSParticipantLocation Topic
	6.8.2 OpenDDSConnectionRecord Topic
	6.8.3 OpenDDSInternalThread Topic

	Chapter 7 Run-time Configuration
	7.1 Configuration Approach
	7.2 Common Configuration Options
	7.3 Discovery Configuration
	7.3.1 Domain Configuration
	7.3.2 Configuring Applications for DCPSInfoRepo
	7.3.2.1 Configuring for Multiple DCPSInfoRepo Instances

	7.3.3 Configuring for DDSI-RTPS Discovery
	7.3.3.1 Additional DDSI-RTPS Discovery Features

	7.3.4 Configuring for Static Discovery

	7.4 Transport Configuration
	7.4.1 Overview
	7.4.1.1 Transport Concepts
	7.4.1.2 How OpenDDS Selects a Transport

	7.4.2 Configuration File Examples
	7.4.2.1 Single Transport Configuration
	7.4.2.2 Using Mixed Transports
	7.4.2.3 Using Multiple Configurations

	7.4.3 Transport Registry Example
	7.4.4 Transport Configuration Options
	7.4.5 Transport Instance Options
	7.4.5.1 Configuration Options Common to All Transports
	7.4.5.2 TCP/IP Transport Configuration Options
	TCP/IP Reconnection Options

	7.4.5.3 UDP/IP Transport Configuration Options
	7.4.5.4 IP Multicast Transport Configuration Options
	7.4.5.5 RTPS_UDP Transport Configuration Options
	Additional RTPS_UDP Features

	7.4.5.6 Shared-Memory Transport Configuration Options

	7.5 Discovery and Transport Configuration Templates
	7.5.1 Configuring Discovery for a Set of Similar Domains
	7.5.2 Configuring a Set of Similar Transports
	7.5.3 Adding Customizations
	7.5.4 Example Config.ini

	7.6 Logging
	7.6.1 DCPS Layer Debug Logging
	7.6.2 Transport Layer Debug Logging
	7.6.3 Security Debug Logging

	Chapter 8 opendds_idl
	8.1 opendds_idl Command Line Options
	8.2 Using the IDL-to-C++11 Mapping

	Chapter 9 The DCPS Information Repository
	9.1 DCPS Information Repository Options
	9.2 Repository Federation
	9.2.1 Federation Management
	9.2.2 Federation Example
	9.2.2.1 Configuring the Federation Example
	9.2.2.2 Running the Federation Example

	Chapter 10 Java Bindings
	10.1 Introduction
	10.2 IDL and Code Generation
	10.3 Setting up an OpenDDS Java Project
	10.4 A Simple Message Publisher
	10.4.1 Initializing the Participant
	10.4.2 Registering the Data Type and Creating a Topic
	10.4.3 Creating a Publisher
	10.4.4 Creating a DataWriter and Registering an Instance

	10.5 Setting up the Subscriber
	10.5.1 Creating a Subscriber
	10.5.2 Creating a DataReader and Listener

	10.6 The DataReader Listener Implementation
	10.7 Cleaning up OpenDDS Java Clients
	10.8 Configuring the Example
	10.9 Running the Example
	10.10 Java Message Service (JMS) Support

	Chapter 11 Modeling SDK
	11.1 Overview
	11.1.1 Model Capture
	11.1.2 Code Generation
	11.1.3 Programming

	11.2 Installation and Getting Started
	11.2.1 Prerequisites
	11.2.2 Installation
	11.2.3 Getting Started

	11.3 Developing Applications
	11.3.1 Modeling Support Library
	11.3.1.1 The Application Class
	11.3.1.2 The Service Class

	11.3.2 Generated Code
	11.3.2.1 The DCPS Model Class
	11.3.2.2 The Traits Class
	11.3.2.3 The Service Typedef
	11.3.2.4 Data Library Generated Code
	11.3.2.5 QoS Policy Library Generated Code

	11.3.3 Application Code Requirements
	11.3.3.1 Required headers
	11.3.3.2 Exception Handling
	11.3.3.3 Instantiation
	11.3.3.4 Publisher Code
	11.3.3.5 Subscriber Code
	11.3.3.6 MPC Projects
	11.3.3.7 Dependencies Between Models

	Chapter 12 Alternate Interfaces to Data
	12.1 Recorder and Replayer
	12.1.1 API Structure
	12.1.2 Usage Model
	12.1.3 QoS Processing
	12.1.3.1 Durability details

	12.1.4 Recorder With XTypes Dynamic Language Binding

	12.2 Observer
	12.2.1 Attaching Observers to Entities
	12.2.2 Writing Observer-Derived Classes
	12.2.3 The Observer::Sample structure

	Chapter 13 Safety Profile
	13.1 Overview
	13.2 Safety Profile Subset of OpenDDS
	13.3 Safety Profile Configurations of ACE
	13.4 Run-time Configurable Options
	13.5 Running ACE and OpenDDS Tests
	13.6 Using the Memory Pool in Applications

	Chapter 14 DDS Security
	14.1 Building OpenDDS with Security Enabled
	14.1.1 Prerequisites
	14.1.2 Building OpenDDS with Security on Windows
	14.1.3 Building OpenDDS with Security on Linux
	14.1.4 Building OpenDDS with Security on macOS
	14.1.5 Building OpenDDS with Security for Android

	14.2 Architecture of the DDS Security Specification
	14.3 Terms and Background Info
	14.4 Required DDS Security Artifacts
	14.4.1 Per-Domain Artifacts
	14.4.2 Per-Participant Artifacts

	14.5 Required OpenDDS Configuration
	14.5.1 DDS Security Configuration via PropertyQosPolicy
	14.5.2 PropertyQosPolicy Example Code
	14.5.3 Identity Certificates and Certificate Authorities
	14.5.4 Identity, Permissions, and Subject Names
	14.5.5 Examples in the OpenDDS Source Code Repository
	14.5.6 Using OpenSSL Utilities for OpenDDS
	14.5.6.1 Creating Self-Signed Certificate Authorities
	14.5.6.2 Creating Signed Certificates with an Existing CA
	14.5.6.3 Signing Documents with SMIME

	14.6 Domain Governance Document
	14.6.1 Global Governance Model
	14.6.2 Key Governance Elements
	14.6.3 Domain Rule Configuration Options
	14.6.4 Topic Rule Configuration Options
	14.6.5 Governance XML Example

	14.7 Participant Permissions Document
	14.7.1 Key Permissions Elements
	14.7.2 Permissions XML Example

	14.8 DDS Security Implementation Status

	Chapter 15 Internet-Enabled RTPS
	15.1 Overview
	15.2 The RtpsRelay
	15.2.1 Using the RtpsRelay
	15.2.2 Usage
	15.2.3 Deployment Considerations

	15.3 Interactive Connectivity Establishment (ICE) for RTPS
	15.4 Security Considerations
	15.4.1 Use DDS Security
	15.4.2 Understand the Weaknesses of (Secure) RTPS Discovery
	15.4.3 Run Participants in a Secure Network

	Chapter 16 XTypes
	16.1 Overview
	16.2 Features
	16.2.1 Extensibility
	16.2.2 Assignability
	16.2.3 Interoperability with non-XTypes Implementations

	16.3 Examples and Explanation
	16.3.1 Mutable Extensibility
	16.3.2 Assignability
	16.3.3 Member IDs
	16.3.4 Appendable Extensibility
	16.3.5 Final Extensibility
	16.3.6 Try Construct

	16.4 Data Representation
	16.5 Type Consistency Enforcement
	16.6 IDL Annotations
	16.6.1 Indicating which Types can be topic types
	16.6.1.1 @topic
	16.6.1.2 @nested
	16.6.1.3 @default_nested

	16.6.2 Specifying allowed Data Representations
	16.6.2.1 @OpenDDS::data_representation(XML)
	16.6.2.2 @OpenDDS::data_representation(XCDR1)
	16.6.2.3 @OpenDDS::data_representation(XCDR2)

	16.6.3 Determining Extensibility
	16.6.3.1 @mutable
	16.6.3.2 @appendable
	16.6.3.3 @final

	16.6.4 Customizing XTypes per-member
	16.6.4.1 @try_construct(USE_DEFAULT)
	16.6.4.2 @try_construct(TRIM)
	16.6.4.3 @try_construct(DISCARD)

	16.6.5 Member ID assignment
	16.6.5.1 @id(value)
	16.6.5.2 @autoid(value)
	16.6.5.3 @hashid(value)

	16.6.6 Determining the Key Fields of a Type
	16.6.6.1 @key

	16.7 Dynamic Language Binding
	16.7.1 Representing Types with TypeObject and DynamicType
	16.7.1.1 Enabling Use of CompleteTypeObjects

	16.7.2 Interpreting Data Samples with DynamicData
	16.7.2.1 Reading Basic Types
	16.7.2.2 Reading Collections of Basic Types
	16.7.2.3 Reading Members of More Complex Types

	16.8 Unimplemented Features
	16.8.1 Type System
	16.8.2 Annotations

	16.9 Differences from the specification

